
1Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Last update: 11:09 PM, March 7, 2025

Acting, Planning,
and Learning

Malik Ghallab, Dana Nau,
and Paolo Traverso

Chapter 3
Planning with Deterministic Models

 3.1. Forward State-Space Search
 3.2. Heuristic Functions

Dana S. Nau
University of Maryland

with contributions from
Mark “mak” Roberts

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://scholar.google.com/citations?user=vlbX4J8AAAAJ

2Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87Planning as Search

● Most AI planning procedures are
search procedures
▸ Search tree: the data structure the

procedure uses to keep track of
which paths it has explored

Credit: Stuart Russell,
lecture slides for
Artificial Intelligence:
A Modern Approach

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

3Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Search-Tree Terminology

● Node ≈ a pair ν = (π,s), where s = γ(s0,π)
▸ In practice, ν will contain other things too

• depth(ν), cost(π), pointers to parent and children, …
▸ π isn’t always stored explicitly, can be computed from

the parent pointers

● children of ν = {(π·a, γ(s,a)) | a is applicable in s}

● successors or descendants of ν:
▸ children, children of children, etc.
▸ sometimes called a subtree

● ancestors of ν
 = {nodes that have ν as a successor}

● initial or starting or root node ν0 = (⟨⟩, s0)
▸ root of the search tree

● path from the root node: sequence of nodes
⟨ν0, …, νn⟩ such that each νi is a child of νi−1

● height of search space
 = length of longest acyclic path from ν0

● depth of ν
 = length(π) = length of path from ν0 to ν

● branching factor of ν
 = number of children of ν

● branching factor of a search tree
 = max branching factor of the nodes

● expand ν: generate all children

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

4Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

3.1. Forward Search

Forward-search (Σ, s0, g)
s ← s0; π ← ⟨⟩
while s ⊭ g do

if Applicable(s) = ∅ then return failure
nondeterministically choose a ∈ Applicable(s)
s ← γ(s,a); π ← π·a

return π

● Nondeterministic algorithm
▸ Sound: if an execution trace returns a plan π,

it’s a solution
▸ Complete: if the planning problem is

solvable, at least one of the possible
execution traces will return a solution

● Represents a class of deterministic search
algorithms
▸ Deterministic versions of the

nondeterministic choice
• Which leaf node to expand next
• Which nodes to prune from the search

space
▸ They’ll all be sound, but not necessarily

complete

Dead end

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

5Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Deterministic Version

Forward-Search-Det(Σ, s0, g)
 Frontier ← {(⟨⟩, s0)}
 Expanded ← ∅
 while Frontier ≠ ∅ do
 select a node ν = (π, s) ∈ Frontier
 remove ν from Frontier
 add ν to Expanded
 if s satisfies g then return π
 Children ← {(π·a, γ(s,a)) | a ∈ Applicable(s)}
 prune 0 or more nodes from
 Children, Frontier, Expanded
 Frontier ← Frontier ∪ Children
 return failure

● Special cases:
▸ depth-first, breath-first, A*, many others

● Classify by
▸ how they select nodes (i)
▸ how they prune nodes (ii)

● Pruning often includes cycle-checking:
▸ Remove from Children every node (π,s)

that has an ancestor (π′,s′) such that s′ = s
● In classical planning problems, S is finite

▸ Cycle-checking will guarantee termination

(i)

(ii)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

6Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

#1

#3#2 #4

Breadth-First Search (BFS)
(i): Select (π,s) ∈ Frontier that has the smallest

length(π), i.e., smallest number of edges
▸ Possible tie-breaking rules:

• left-to-right
• select smallest h(s) - will discuss later

(ii): Remove every (π,s) ∈ Children ∪ Frontier
 such that s ∈ Expanded

▸ Thus expand states at most once

● Properties
▸ Terminates
▸ Returns solution if one exists

• shortest, but not least-cost
▸ Worst-case complexity:

• memory O(|S|), running time O(b|S|)
▸ b = max branching factor
▸ |S| = number of states in S

Forward-Search-Det(Σ, s0, g)
 Frontier ← {(⟨⟩, s0)}
 Expanded ← ∅
 while Frontier ≠ ∅ do
 select a node ν = (π, s) ∈ Frontier
 remove ν from Frontier
 add ν to Expanded
 if s satisfies g then return π
 Children ← {(π·a, γ(s,a)) | a ∈ Applicable(s)}
 prune 0 or more nodes from
 Children, Frontier, Expanded
 Frontier ← Frontier ∪ Children
 return failure

(i)

(ii)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

7Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Depth-First Search (DFS)
(i): Select (π,s) ∈ Frontier that has largest length(π),

i.e., largest number of edges
▸ Possible tie-breaking rules:

• left-to-right
• select smallest h(s) - will discuss later

(ii): Do cycle-checking, then prune all nodes that
 recursive depth-first search would discard

▸ Repeatedly remove from Expanded
any node that has no children in
Children ∪ Frontier ∪ Expanded

● Properties
▸ Terminates
▸ Returns solution if there is one

• No guarantees on quality
▸ Worst-case running time O(bl)
▸ Worst-case memory O(bl)

• b = max branching factor
• l = max depth of any node

#1

#3

#2

#4

Forward-Search-Det(Σ, s0, g)
 Frontier ← {(⟨⟩, s0)}
 Expanded ← ∅
 while Frontier ≠ ∅ do
 select a node ν = (π, s) ∈ Frontier
 remove ν from Frontier
 add ν to Expanded
 if s satisfies g then return π
 Children ← {(π·a, γ(s,a)) | a ∈ Applicable(s)}
 prune 0 or more nodes from
 Children, Frontier, Expanded
 Frontier ← Frontier ∪ Children
 return failure

(i)

(ii)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

8Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Uniform-Cost Search
(i): Select (π,s) ∈ Frontier that has smallest cost(π)

(ii): Prune every (π,s) ∈ Children ∪ Frontier
 such that Expanded already contains a node (π′,s)

● Properties
▸ Terminates
▸ Finds optimal (i.e., least-cost) solution if one exists
▸ Worst-case time O(b|S|)
▸ Worst-case memory O(|S|)

14 12 75

11 8 5

#1

#2#3

Poll: If node ν is expanded before node ν′,
then how are cost(ν) and cost(ν′) related?

A. cost(ν) < cost(ν′)
B. cost(ν) ≤ cost(ν′)
C. cost(ν) > cost(ν′)
D. cost(ν) ≥ cost(ν′)
E. none of the above

Forward-Search-Det(Σ, s0, g)
 Frontier ← {(⟨⟩, s0)}
 Expanded ← ∅
 while Frontier ≠ ∅ do
 select a node ν = (π, s) ∈ Frontier
 remove ν from Frontier
 add ν to Expanded
 if s satisfies g then return π
 Children ← {(π·a, γ(s,a)) | a ∈ Applicable(s)}
 prune 0 or more nodes from
 Children, Frontier, Expanded
 Frontier ← Frontier ∪ Children
 return failure

(i)

(ii)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

9Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Heuristic Functions (more about this later)
● Let h*(s) = minimum cost of getting to a goal

 = min{cost(π) | γ(s,π) ∈ Sg}
▸ Note that h*(s) ≥ 0 for all s

● heuristic function h(s):

▸ Returns estimate of h*(s)
▸ Require h(s) ≥ 0 for all s

● Example:

▸ s = the city you’re in

▸ Action: follow road from s
to a neighboring city

▸ h*(s) = smallest distance to
Bucharest using roads

▸ h(s) = straight-line distance from s to Bucharest

straight-line dist.
from s to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Fagaras 176
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87

goal

s0

Credit: Stuart Russell,
lecture slides for
Artificial Intelligence:
A Modern Approach

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

10Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Greedy Best-First Search (GBFS)

● Idea: choose a node that’s likely to be close to a goal
● Node selection:

▸ Select a node ν = (π, s) ∈ Frontier for which h(s) is
smallest
• Possible tie-breaking rule: choose oldest

● Pruning: should at least include cycle checking.
▸ For other cases where two nodes go to the same state s,

several possibilities:
• Prune one of the nodes arbitrarily
• Prune the higher-cost node
• Do no pruning (with a good heuristic function,

GBFS is unlikely to expand both nodes)
● Properties

▸ Terminates; returns a solution if one exists
▸ Solution is usually found quickly, often near-optimal

Poll: Have you seen GBFS before?
A. yes
B. no
C. yes, but I don’t remember it very well

Forward-Search-Det(Σ, s0, g)
 Frontier ← {(⟨⟩, s0)}
 Expanded ← ∅
 while Frontier ≠ ∅ do
 select a node ν = (π, s) ∈ Frontier
 remove ν from Frontier
 add ν to Expanded
 if s satisfies g then return π
 Children ← {(π·a, γ(s,a)) | a ∈ Applicable(s)}
 prune 0 or more nodes from
 Children, Frontier, Expanded
 Frontier ← Frontier ∪ Children
 return failure

(i)

(ii)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

11Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

329 374

X
366 380 193

253 0
X

366

253

176

straight-line dist.
from s to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Fagaras 176
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

GBFS Example

● generates 10 nodes
● solution cost 450

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

12Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

A*
● Idea: try to choose a node on an optimal path from s0 to goal
● Node selection

▸ Select a node ν = (π,s) in Frontier that has smallest
value of f(ν) = cost(π) + h(s)
• Possible tie-breaking rule: select oldest

● Pruning:
▸ for every node ν = (π,s) in Children:

• If Children ∪ Frontier ∪ Expanded contains another
node with the same state s, then we’ve found
multiple paths to s

• Keep only the one with the lowest cost
• If more than one such node, keep the oldest

● Properties (in classical planning problems):
▸ Termination: Always terminates
▸ Complete: returns a solution if one exists
▸ Optimality: can guarantee this under certain conditions

(I’ll discuss later)

Poll: Have you seen A* before?
A. yes
B. no
C. yes, but I don’t remember it very well

Forward-Search-Det(Σ, s0, g)
 Frontier ← {(⟨⟩, s0)}
 Expanded ← ∅
 while Frontier ≠ ∅ do
 select a node ν = (π, s) ∈ Frontier
 remove ν from Frontier
 add ν to Expanded
 if s satisfies g then return π
 Children ← {(π·a, γ(s,a)) | a ∈ Applicable(s)}
 prune 0 or more nodes from
 Children, Frontier, Expanded
 Frontier ← Frontier ∪ Children
 return failure

(i)

(ii)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

13Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

straight-line dist.
from s to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Fagaras 176
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea
418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

X X

X

XX X

366 = 0 + 366

393=140+253

413=220+193415=239+176

417=317+100

ν = (s,π)
f(ν) = cost(π)+h(s)

1

2

34

5

6
● generates 16 nodes

▸ vs 10 for GBFS
● solution cost 418

▸ vs 450 for GBFS

A* Example

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

14Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87

goal

s0

Admissibility
● Notation:

▸ ν = (π,s), where π is the plan for going from s0 to s
▸ h*(s) = min{cost(π′) | γ(s,π′) satisfies g}
▸ f *(ν) = cost(π) + h*(s)
▸ f(ν) = cost(π) + h(s)

● Definition: h is admissible if
for every s, h(s) ≤ h*(s)

● Optimality:
▸ if h is admissible then every

solution returned by A* will
be optimal (least cost)

Poll: If h(s) = straight-line
distance from s to Bucharest, is
h admissible?

A. Yes B. No C. Not sure

straight-line dist.
from s to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Fagaras 176
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

15Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87

goal

s0

Admissibility
● Notation:

▸ ν = (π,s), where π is the plan for going from s0 to s
▸ h*(s) = min{cost(π′) | γ(s,π′) satisfies g}
▸ f *(ν) = cost(π) + h*(s)
▸ f(ν) = cost(π) + h(s)

● Definition: h is admissible if
for every s, h(s) ≤ h*(s)

● Optimality:
▸ if h is admissible then every

solution returned by A* will
be optimal (least cost)

straight-line dist.
from s to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Fagaras 176
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

(i)

(ii)

Forward-Search-Det(Σ, s0, g)
 Frontier ← {(⟨⟩, s0)}
 Expanded ← ∅
 while Frontier ≠ ∅ do
 select a node ν = (π, s) ∈ Frontier
 remove ν from Frontier
 add ν to Expanded
 if s satisfies g then return π
 Children ← {(π·a, γ(s,a)) | a ∈ Applicable(s)}
 prune 0 or more nodes from
 Children, Frontier, Expanded
 Frontier ← Frontier ∪ Children
 return failure

Poll: If h is admissible, does it follow that
for every expanded node ν, f(ν) ≤ f*(ν) ?

Poll: If h is admissible, does it follow that
for every node ν, f(ν) ≤ f*(ν) ?

A. Yes B. No C. Not sure

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

16Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87

goal

s0

Dominance
● Definition:

▸ Let h1, h2 be admissible heuristic
functions

▸ h2 dominates h1 if ∀s,
h1(s) ≤ h2(s) ≤ h∗(s)

● Suppose h2 dominates h1, and
A* always resolves ties in favor
of the same node. Then

▸ A* with h2 will never expand
more nodes than A* with h1

▸ In most cases, A* with h2
will expand fewer nodes
than A* with h1

straight-line dist.
from s to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Fagaras 176
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Poll: Let h1(s) = 0 and h2(s) =
straight-line distance from s to
Bucharest. Does h2 dominate h1 ?

A. Yes B. No C. Not sure

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

17Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87

goal

s0

Digression

● Straight-line distance to Bucharest is a
domain-specific heuristic function
▸ OK for planning a path to Bucharest
▸ Not for other planning problems

● Domain-independent heuristic function:
▸ A heuristic function that can be used in

any classical planning domain
▸ Many such heuristics (see Section 3.2)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

18Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Properties of A*
In classical planning problems:
● Termination: A* will always terminate
● Completeness: if the problem is solvable, A*

will return a solution
● Optimality: if h is admissible then the solution

will be optimal (least cost)
● Dominance: If h2 dominates h1 and if A*

always resolves ties the same way
▸ A* with h2 will never expand more nodes

than A* with h1
▸ In most cases, A* with h2 will expand

fewer nodes than A* with h1

● A* needs to store every node it visits
▸ Running time O(b|S|) and memory O(|S|) in

worst case
▸ With good heuristic function, usually much

smaller

● The book discusses additional properties

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

19Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Comparison

● If h is admissible, A* will return optimal solutions
▸ But running time and memory requirement grow exponentially in b and d

● GBFS returns the first solution it finds
▸ There are cases where GBFS takes more time and memory than A*

• But with a good heuristic function, such cases are rare
▸ On classical planning problems with a good heuristic function

• GBFS usually near-optimal solutions
• GBFS does very little backtracking
• Running time and memory requirement usually much less than A*

▸ GBFS is used by most classical planners nowadays

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

20Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Forward-Search-Det(Σ, s0, g)
 Frontier ← {(⟨⟩, s0)}
 Expanded ← ∅
 c*← ∞; π*← failure
 while Frontier ≠ ∅ do
 select a node ν = (π, s) ∈ Frontier
 remove ν from Frontier
 add ν to Expanded
 if s satisfies g then return π
 if s satisfies g and cost(π) < c* then
 c*← cost(π); π*← π
 else if f(ν) < c* then

 Children ←
 {(π·a, γ(s,a)) | a ∈ Applicable(s)}
 prune 0 or more nodes from
 Children, Frontier, Expanded
 Frontier ← Frontier ∪ Children

 return failure π*

(i)

(ii)

(iii)

Depth-First Branch and Bound (DFBB)
● Basic idea:

▸ depth-first search, but don’t
stop at the first solution

▸ π* = best solution so far
▸ c* = cost(π*)
▸ prune ν if f(ν) ≥ c*

▸ when frontier is empty,
return π*

● Properties
▸ Termination, completeness,

optimality same as A*
▸ Usually less memory, more

time than A*
▸ Worst-case like DFS:

• O(bl) memory, O(bl)
time

● Can write it as a modified
version of
Forward-Search-Det

● Node selection:
(i) same as in DFS

● Pruning:
(ii) If f(ν) ≥ c∗ then discard
(iii) Otherwise prune the
 same nodes as in DFS

● Don’t stop until every node
has been visited or pruned

Poll: Have you seen DFBB before?
A. yes B. no
C. yes, but don’t remember it very well

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

21Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Comparisons

● If h is admissible, both A* and DFBB will return optimal solutions
▸ Usually DFBB generates more nodes, but A* takes more memory
▸ Worst case for DFBB:

• Highly connected graphs (many paths to each state)
• Can have exponentially worse running time than A* (generates nodes

exponentially many times)
▸ Best case for DFBB:

• Search space is a tree of uniform height, all solutions at the bottom
(e.g., constraint satisfaction)

• DFBB and A* have similar running time
• A* can take exponentially more memory than DFBB

● DFS returns the first solution it finds
▸ can take much less time than DFBB
▸ but solution can be very far from optimal

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

22Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Iterative Deepening (IDS)
IDS(Σ, s0, g)

for k = 1 to ∞ do
 do a depth-first search, backtracking at every node of depth k
 if the search found a solution then return it
 if the search generated no nodes of depth k then return failure

● Nodes generated:
a,b,c
a,b,c,d,e,f,g
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o

● Solution path ⟨a,c,g,o⟩
● Total number of nodes generated:

3+7+15 = 25
● If goal is at depth d and branching factor is 2:

▸ ∑1
d (2i+1–1) = ∑1

d 2i+1 – ∑1
d 1 = O(2d)

Poll: How many nodes
generated if branching
factor is b instead of 2?
A. O(b2d)
B. O((b/2)d)
C. O(bd)
D. O(bd+1)
E. something else

e

j k

b

d

h i

a

g

n o

c

f

l m

 goal

Poll: Have you seen Iterative
Deepening before?
A. yes
B. no
C. yes, but I don’t remember it

very well

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

23Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Iterative Deepening (IDS)
IDS(Σ, s0, g)

for k = 1 to ∞ do
 do a depth-first search, backtracking at every node of depth k
 if the search found a solution then return it
 if the search generated no nodes of depth k then return failure

● Nodes generated:
a,b,c
a,b,c,d,e,f,g
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o

● Solution path ⟨a,c,g,o⟩
● Total number of nodes generated:

3+7+15 = 25
● If goal is at depth d and branching factor is 2:

▸ ∑1
d (2i+1–1) = ∑1

d 2i+1 – ∑1
d 1 = O(2d)

e

j k

b

d

h i

a

g

n o

c

f

l m

 goal

Properties:

● Termination, completeness,
optimality
▸ same as BFS

● Memory (worst case): O(bd)
▸ vs. O(bd) for BFS

● If the number of nodes grows
exponentially with d:
▸ worst-case running time

O(bd), vs. O(bl) for DFS
▸ b = max branching factor
▸ l = max depth of any node
▸ d = min solution depth if

there is one, otherwise l

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

24Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

3.2. Heuristic Functions

● Given: planning problem P in domain Σ
● One way to create a heuristic function:

▸ Weaken some of the constraints, get additional solutions
▸ Relaxed planning domain Σ′ and relaxed problem

P′ = (Σ′,s0,g′) such that
• every solution for P is also a solution for P′
• additional solutions with lower cost

▸ Suppose we have an algorithm A for solving planning problems in Σ′
• Heuristic function hA(s) for P:

▸ Find a solution π′ for (Σ′,s,g′); return cost(π′)
▸ Useful if A runs quickly

• If A always finds optimal solutions, then hA is admissible

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

25Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example
● Relaxation: let vehicle travel in a straight line between any pair of cities

▸ straight-line-distance ≤ distance by road
⇒ additional solutions with lower cost

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Sibiu Fagaras

Rimnicu	Vilcea

PitesF

71

75

118

151

140

111

70

75
120

146
138

97

80

99

211

85

142

92

87

straight-line dist.
from s to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Fagaras 176
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

26Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Domain-independent Heuristics

● Use relaxation to get heuristic functions that can be used in any
classical planning problem
▸ Delete-relaxation heuristics

• Optimal relaxed solution
• Fast-Forward heuristic

▸ Landmark heuristics
▸ Max-cost and additive-cost heuristics (I’ll skip these)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

27Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

3.2.1. Delete-Relaxation
● Allow a state variable to have more than one

value at the same time
● When assigning a new value, keep the old one too
● Relaxed state-transition function, γ+

▸ If action a is applicable to state s, then
γ+(s,a) = s ∪ γ(s,a)

● If s includes an atom x=v, and a has an effect x←w
▸ Then γ+(s,a) includes both x=v and x=w

● Relaxed state (or r-state)
▸ a set ŝ of ground atoms that includes ≥ 1 value

for each state variable
▸ represents {all states that are subsets of ŝ}

s0 = {loc(r1)=d3, cargo(r1)=nil, loc(c1)=d1}

d2d1

d3
r1

c1

ŝ1 = γ+(s0, move(r1,d3,d1))
= {loc(r1)=d3, loc(r1)=d1, cargo(r1)=nil, loc(c1)=d1}

move(r1, d3, d1)
 pre: loc(r1) = d3
 eff: loc(r1) ← d1 d2d1

d3

c1

r1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

28Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Relaxed Applicability

● Action a is r-applicable in a relaxed state ŝ
if an r-subset of ŝ satisfies a’s preconditions
▸ a subset with one value per state variable

● If a is r-applicable then γ+(ŝ,a) = ŝ ∪ γ(s,a)

Poll: would this definition be equivalent?
• Action a is r-applicable in ŝ if ŝ

satisfies a’s preconditions
A. Yes B. No C. don’t know

load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l, loc(r)=l
 eff: cargo(r)←c, loc(c)←r

move(r, d, e)
 pre: loc(r)=d
 eff: loc(r)←e

unload(r, c, l)
 pre: loc(c)=r, loc(r)=l
 eff: cargo(r)←nil, loc(c)←l d2d1

d3

c1

r1

d2d1

d3

c1

r1

d2d1

d3
r1

c1

ŝ2

ŝ1

s0

ŝ1 = γ+(s0, move(r1,d3,d1))
 = {loc(r1) = d1,

loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

ŝ2 = γ+(ŝ1, load(r1,c1,d1))
 = {loc(r1) = d1,

loc(r1) = d3,
 cargo(r1) = nil,
 cargo(r1) = c1,

loc(c1) = r1,
 loc(c1) = d1}

s0 = {loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

29Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Relaxed Applicability (continued)
● Let π = ⟨a1, …, an⟩ be a plan
● Suppose we can r-apply the actions of π in

the order a1, …, an :
▸ r-apply a1 in ŝ0, get ŝ1 = γ+(ŝ0,a1)
▸ r-apply a2 in ŝ1, get ŝ2 = γ+(ŝ1,a2)
▸ …
▸ r-apply an in ŝn–1, get ŝn = γ+(ŝn–1,an)

● Then π is r-applicable in ŝ0
and γ+(ŝ0,π) = ŝn

● Example: if s0 and ŝ2 are as shown, then
γ+(s0, ⟨move(r1,d3,d1), load(r1,c1,d1)⟩) = ŝ2

d2d1

d3
r1

c1

ŝ2

ŝ1

s0

ŝ1 = γ+(s0, move(r1,d3,d1))
 = {loc(r1) = d1,

loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

ŝ2 = γ+(ŝ1, load(r1,c1,d1))
 = {loc(r1) = d1,

loc(r1) = d3,
 cargo(r1) = nil,
 cargo(r1) = c1,

loc(c1) = r1,
 loc(c1) = d1}

s0 = {loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

d2d1

d3

c1

r1

d2d1

d3

c1

r1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

30Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Relaxed Solution
● An r-state ŝ r-satisfies a formula g

if an r-subset of ŝ satisfies g
▸ a subset with one value per state variable

● Relaxed solution for a planning problem
P = (Σ, s0, g):
▸ a plan π such that γ+(s0, π) r-satisfies g

● Example: let P be as shown
▸ ŝ2 r-satisfies g
▸ So π = ⟨move(r1,d3,d1), load(r1,c1,d1)⟩

is a relaxed solution for P

d2d1

d3
r1

c1

ŝ2

ŝ1

s0

ŝ1 = γ+(s0, move(r1,d3,d1))
 = {loc(r1) = d1,

loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

ŝ2 = γ+(ŝ1, load(r1,c1,d1))
 = {loc(r1) = d1,

loc(r1) = d3,
 cargo(r1) = nil,
 cargo(r1) = c1,

loc(c1) = r1,
 loc(c1) = d1}g = {loc(r1)=d3, loc(c1)=r1}

d3
r1 c1

s0 = {loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

d2d1

d3

c1

r1

d2d1

d3

c1

r1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

31Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Relaxed Solution

● Planning problem P = (Σ, s0, g)
● Optimal relaxed solution heuristic:

▸ h+(s) = minimum cost of all relaxed
solutions for (Σ, s, g)

● Example: s = s0

● π = ⟨move(r1,d3,d1), load(r1,c1,d1)⟩
▸ cost(π) = 2

● No less-costly relaxed solution, so h+(s0) = 2

d2d1

d3
r1

c1

ŝ2

ŝ1

s0

ŝ1 = γ+(s0, move(r1,d3,d1))
 = {loc(r1) = d1,

loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

ŝ2 = γ+(ŝ1, load(r1,c1,d1))
 = {loc(r1) = d1,

loc(r1) = d3,
 cargo(r1) = nil,
 cargo(r1) = c1,

loc(c1) = r1,
 loc(c1) = d1}

s0 = {loc(r1) = d3,
cargo(r1) = nil,
loc(c1) = d1}

g = {loc(r1)=d3, loc(c1)=r1}

d3
r1 c1

Poll: is h+ admissible?
A. Yes
B. No

d2d1

d3

c1

r1

d2d1

d3

c1

r1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

32Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example: GBFS

● GBFS with initial state s0, goal g, heuristic h+

● Applicable actions a1, a2 produce states s1, s2

● GBFS computes h+(s1) and h+(s2), chooses the state that has the lower h+ value

d2d1

d3

r1
c1 d2d1

d3

r1
c1

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

g = {loc(r1)=d3, loc(c1)=r1}

d3
r1 c1

s1 = γ(s0,a1)
 = {loc(r1) = d1,
 cargo(r1) = nil,
 loc(c1) = d1}

s2 = γ(s0,a2)
 = {loc(r1) = d2,
 cargo(r1) = nil,
 loc(c1) = d1}

Poll 1: What is h+(s1)?
A. 1 D. 4
B. 2 E. other
C. 3

d2d1

d3
r1

c1

Poll 2: What is h+(s2)?
A. 1 D. 4
B. 2 E. other
C. 3

a1 = move(r1,d3,d1) a2 = move(r1,d3,d2)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

33Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Fast-Forward Heuristic

● Every state is also a relaxed state
● Every solution is also a relaxed solution

● h+(s) = minimum cost of all relaxed solutions
▸ Thus h+ is admissible

● Problem: computing h+(s) is NP-hard

● Fast-Forward Heuristic, hFF

▸ An approximation of h+ that’s easier to compute
• Upper bound on h+

▸ Name comes from a planner called Fast-Forward

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

34Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Preliminaries
● Suppose a1 and a2 are r-applicable in ŝ0

● Let ŝ1 = γ+(ŝ0, a1) = ŝ0 ∪ eff(a1)
● Then a2 is still applicable in ŝ1

▸ ŝ2 = γ+(ŝ1, a2) = ŝ0 ∪ eff(a1) ∪ eff(a2)
● Apply a1 and a2 in the opposite order ⇒ same state ŝ2

● Let A1 be a set of actions that all are r-applicable in ŝ0

▸ Can r-apply them in any order and get same result
▸ ŝ1 = γ+(ŝ0, A1) = ŝ0 ∪ eff(A1)

• where eff(A1) = ⋃{eff(a) | a ∈ A1}
● Suppose A2 is a set of actions that are r-applicable in ŝ1

▸ ŝ1 satisfies pre(A2) = ⋃{pre(a) | a ∈ A2}
▸ ŝ2 = γ+(ŝ0, ⟨A1, A2⟩) = ŝ0 ∪ eff(A1) ∪ eff(A2)
…

● Define γ+(ŝ0, ⟨A1, A2,…, An⟩) in the obvious way

s0 = {loc(r1)=d1, cargo(r1)=nil, loc(c1)=d1}
a1 = load(r1,c1,d1)
a2 = move(r1,d1,d3)
A1 = {a1, a2}
γ+(s0, A1) = {loc(r1)=d1, loc(r1)=d3,
 cargo(r1)=nil, cargo(r1)=c1,

loc(c1)=d1, loc(c1)=r1}

d2d1

d3

r1
c1

d2d1

d3

c1

r1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

35Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Fast-Forward Heuristic

HFF(Σ, s, g): // find a minimal relaxed solution, return its cost

// construct a relaxed solution ⟨A1,A2,…,Ak⟩:
ŝ0 ← s
for k = 1 by 1 until ŝk r-satisfies g

Ak ← {all actions r-applicable in ŝk–1}; ŝk ← γ+(sk–1, Ak)
if k > 1 and ŝk = ŝk–1 then return ∞ // there’s no solution

// extract minimal relaxed solution ⟨â1, â2, …, âk⟩:
ĝk ← g
for i = k, k–1, …, 1:

âi ← any minimal subset of Ai such that γ+(ŝi-1,âi) r-satisfies ĝi

ĝi−1 ← (ĝi ∖ eff(âi)) ∪ pre(âi)
return ∑ costs of the actions in â1, …, âk // upper bound on h+

● Define hFF(s) = the value returned by HFF(Σ,s,g)ambiguous

pre(âi) = ⋃{pre(a) | a ∈ âi}
eff(âi) = ⋃{eff(a) | a ∈ âi}

1. At each iteration, include
all r-applicable actions

2. At each iteration, choose a
minimal set of actions that
r-achieve ĝi

i.e., no proper subset is a relaxed solution

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

36Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

d2d1

d3
r1

c1

s2 = γ(s0,a2) = {loc(c1) = d1, loc(r1) = d2,
 cargo(r1) = nil}

Example: GBFS Again
● GBFS with initial state s0, goal g,

heuristic hFF

● Two applicable actions: a1, a2

● Resulting states: s1, s2

● GBFS computes hFF(s1) and hFF(s2)
▸ Chooses the state that has the

lower hFF value
● Next several slides:

▸ hFF(s1)
▸ hFF(s2) d2d1

d3

r1
c1 d2d1

d3

r1
c1

g = {loc(r1)=d3,
loc(c1)=r1}

d3
r1 c1

s0 = {loc(c1) = d1, loc(r1) = d3,
cargo(r1) = nil}

s1 = γ(s0,a1) = {loc(c1) = d1, loc(r1) = d1,
 cargo(r1) = nil}

a1 = move(r1,d3,d1) a2 = move(r1,d3,d2)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

37Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

from ŝ0:

loc(r1) = d1
loc(c1) = d1
cargo(r1) = nil

move(r1,d1,d3)
move(r1,d1,d2)

loc(r1) = d1
loc(c1) = d1

cargo(r1) = nil

loc(r1) = d3
loc(r1) = d2

load(r1,c1,d1)
cargo(r1) = c1
loc(c1) = r1

Atoms in ŝ1:Actions in A1:Atoms in ŝ0 = s1:

Example
● Computing hFF(s1)

▸ 1. construct a relaxed solution
• at each step, include all

r-applicable actions

// construct a relaxed solution ⟨A1,A2,…,Ak⟩:
ŝ0 ← s
for k = 1 by 1 until ŝk r-satisfies g

Ak ← {all actions r-applicable in ŝk–1}; ŝk ← γ+(sk–1, Ak)
if k > 1 and ŝk = ŝk–1 then return ∞

ŝ1 r-satisfies
g, so ⟨A1⟩ is
a relaxed
solution

Relaxed Planning Graph (RPG) starting at ŝ0 = s1

d3
r1 c1

d2d1

d3

r1
c1

s1 = {loc(r1)=d1, cargo(r1)=nil,
 loc(c1)=d1}

g = {loc(r1)=d3, loc(c1)=r1}

lines for
preconditions
and effects

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

38Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

● â1 is a minimal set of actions
such that γ+(ŝ0,â1) r-satisfies ĝ1

▸ ⟨â1⟩ is a minimal relaxed solution
● Two actions, each with cost 1, so hFF(s1) = 2

Example
● Computing hFF(s1)

2. extract a minimal relaxed solution
▸ if you remove any actions from it,

it’s no longer a relaxed solution

from ŝ0:

Atoms in ŝ1:Actions in A1:Atoms in ŝ0 = s1:

loc(r1) = d1
loc(c1) = d1
cargo(r1) = nil

move(r1,d1,d3)
move(r1,d1,d2)

loc(r1) = d1
loc(c1) = d1

cargo(r1) = nil

loc(r1) = d3
loc(r1) = d2

load(r1,c1,d1)
cargo(r1) = c1
loc(c1) = r1

Solution extraction starting at ĝ1 = g

// extract minimal relaxed solution ⟨â1, â2, …, âk⟩:
ĝk ← g
for i = k, k–1, …, 1:

âi ← any minimal subset of Ai such that γ+(ŝi-1,âi) r-satisfies ĝi

ĝi−1 ← (ĝi ∖ eff(âi)) ∪ pre(âi)

â1

d2d1

d3

r1
c1

s1 = {loc(r1)=d1, cargo(r1)=nil,
 loc(c1)=d1}

g = {loc(r1)=d3, loc(c1)=r1}

ĝ1 = g

ĝ0

d3
r1 c1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

39Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

from ŝ0:

 Atoms in ŝ2:
Actions in A2:

Atoms in ŝ1:Actions in A1:Atoms in ŝ0=s2:

loc(r1) = d2
loc(c1) = d1
cargo(r1) = nil

move(r1,d2,d3)
move(r1,d2,d1)

 from ŝ1:

loc(r1) = d2
loc(c1) = d1

cargo(r1) = nil

loc(r1) = d3
loc(r1) = d1

move(r1,d1,d2)
move(r1,d3,d2)

move(r1,d1,d3)

move(r1,d2,d3)
move(r1,d2,d1)

move(r1,d3,d1)

load(r1,c1,d1)

loc(r1) = d2
loc(c1) = d1
cargo(r1) = nil

loc(r1) = d3
loc(r1) = d1

cargo(r1) = c1
loc(c1) = r1

Example

● Computing hFF(s2)
▸ 1. construct a relaxed solution

• at each step, include all
r-applicable actions

RPG starting at ŝ0 = s2

s2 = {loc(r1)=d2, cargo(r1)=nil,
loc(c1)=d2}

d2d1

d3

r1
c1

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

// construct a relaxed solution ⟨A1,A2,…,Ak⟩:
ŝ0 ← s
for k = 1 by 1 until ŝk r-satisfies g

Ak ← {all actions r-applicable in ŝk–1}; ŝk ← γ+(sk–1, Ak)
if k > 1 and ŝk = ŝk–1 then return ∞

ŝ2 r-satisfies g, so ⟨A1, A2 ⟩
is a relaxed solution

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

40Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

● ⟨â1, â2⟩ is a minimal relaxed solution
● each action’s cost is 1, so hFF(s2) = 3

from ŝ0:

 Atoms in ŝ2:
Actions in A2:

Atoms in ŝ1:Actions in A1:Atoms in ŝ0=s2:

loc(r1) = d2
loc(c1) = d1
cargo(r1) = nil

move(r1,d2,d3)
move(r1,d2,d1)

 from ŝ1:

loc(r1) = d2
loc(c1) = d1

cargo(r1) = nil

loc(r1) = d3
loc(r1) = d1

move(r1,d1,d2)
move(r1,d3,d2)

move(r1,d1,d3)

move(r1,d2,d3)
move(r1,d2,d1)

move(r1,d3,d1)

load(r1,c1,d1)

loc(r1) = d2
loc(c1) = d1
cargo(r1) = nil

loc(r1) = d3
loc(r1) = d1

cargo(r1) = c1
loc(c1) = r1

â1

â2

// extract minimal relaxed solution ⟨â1, â2, …, âk⟩:
ĝk ← g
for i = k, k–1, …, 1:

âi ← any minimal subset of Ai such that γ+(ŝi-1,âi) r-satisfies ĝi

ĝi−1 ← (ĝi ∖ eff(âi)) ∪ pre(âi)

Example

ĝ1 ĝ2 = g

s2 = {loc(r1)=d2, cargo(r1)=nil,
loc(c1)=d2}

d2d1

d3

r1
c1

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

● Computing hFF(s1)
2. extract a minimal relaxed solution
▸ if you remove any actions from it,

it’s no longer a relaxed solution

Solution extraction starting at ĝ2 = g

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

41Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Properties

● Running time is polynomial in |A| + ∑x∈X |Range(x)|

● hFF(s) = value returned by HFF(Σ,s,g)
 = ∑ i cost(âi)
 = ∑ i ∑ {cost(a) | a ∈ âi }

▸ each âi is a minimal set of actions such that γ+(ŝi-1,âi) r-satisfies ĝi

• minimal doesn’t mean smallest

● hFF(s) is ambiguous
▸ depends on which minimal sets we choose

● hFF not admissible

● hFF(s) ≥ h+(s) = smallest cost of any relaxed plan from s to goal

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

42Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

Poll. Suppose the goal atoms are
c7, c8, c9. How many minimal
relaxed solutions are there?

1. 1
2. 2
3. 3
4. 4
5. 5
6. 6
7. 7
8. ≥ 8

from ŝ0

 Atoms
in ŝ2:

Actions
in A2:

Atoms
in ŝ1:

Actions
in A1:

Atoms
in ŝ0=s1:

c1
c2

a1
a2

 from ŝ1

c5
c6

c3
c4 a6

a5

a4
a7

c7
c8
c9a3

c1
c2

a1
a2

c5
c6

c3
c4

a4
a3

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

43Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

3.2.2. Landmark Heuristics

● P = (Σ,s0,g) be a planning problem
● Let φ = φ1 ∨ … ∨ φm be a disjunction of ground atoms
● φ is a disjunctive landmark for P if φ is true at some point in every solution for P

● Example disjunctive landmarks
▸ loc(r1)=d1
▸ loc(r1)=d3
▸ loc(r1)=d3 ∨ loc(r1)=d2

d2d1

d3
r1

c1

s0 = {loc(r1)=d3, cargo(r1)=nil, loc(c1)=d1}

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

From now on, I’ll abbreviate
“disjunctive landmark” as
“landmark”

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

44Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

g

Why are Landmarks Useful?

● Suppose m is a landmark
▸ Every solution to P must achieve m

● Possible strategy:
▸ find a plan to go from s0 to any state s1 that

satisfies m
▸ find a plan to go from s1 to any state s2 that

satisfies g

● Suppose m1, m2, m3 are landmarks
▸ Every solution to P must achieve m1, then

m2, then m3

● Possible strategy:
▸ find a plan to go from s0 to any state s1 that

satisfies m1

▸ find a plan to go from s1 to any state s2 that
satisfies m2

▸ …

m1 gs0 m2 m3
P1 P2 P3 P4ms0

P1 P2

● Can break a problem down into smaller subproblems

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

45Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Computing Landmarks

● Given a formula φ
▸ PSPACE-hard (worst case) to decide

whether φ is a landmark
▸ As hard as solving the planning problem itself

● Some landmarks are easier to find – polynomial time
▸ Several procedures for finding them
▸ I’ll show you one based on relaxed planning graphs

● Why use RPGs?
▸ Easier to solve relaxed planning problems
▸ Easier to find landmarks for them
▸ A landmark for a relaxed planning problem is also

a landmark for the original planning problem

● Key idea: if φ is a landmark, get new
landmarks from the preconditions of the
actions that achieve φ
▸ goal g
▸ {actions that achieve g}

 = {a1, a2}
• pre(a1) = {p1, q}
• pre(a2) = {p2, q}

▸ To achieve g, must achieve
(p1 ∧ q) ∨ (p2 ∧ q)
• same as q ∧ (p1∨p2)

▸ Landmarks:
• q
• p1 ∨ p2

g

a2

a1

p1

q

p2

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

46Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

d2d1

d3
r1

c1

RPG-based Landmark Computation
● Suppose goal is g = {g1, g2,…, gk}

▸ Trivially, every gi is a landmark
● Suppose g1 = loc(r1)=d1

▸ Two actions can achieve g1:
move(r1,d3,d1) and move(r1,d2,d1)

● Preconditions loc(r1)=d3 and loc(r1)=d2
● New landmark:

▸ φ′ = loc(r1)=d3 ∨ loc(r1)=d2

● In this example, s0 satisfies φ′

s0 = {loc(r1)=d3, cargo(r1)=nil, loc(c1)=d1}

move(r, d, e)
 pre: loc(r)=d
 eff: loc(r) ← e
load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l, loc(r)=l
 eff: cargo(r) ← c, loc(c) ← r
unload(r, c, l)
 pre: loc(c)=r, loc(r)=l
 eff: cargo(r) ← nil, loc(c) ← l

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

47Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-based Landmark ComputationRPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

actions that
achieve g

gia2

a1

p1

q1

p2

q2

a3

p3

q3

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

48Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

ŝk = atoms
that are
r-achievable
without R

RPG-based Landmark ComputationRPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

gia2

a1

p1

q1

p2

q2

a3

p3

q3

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

49Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-based Landmark ComputationRPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

r-applicable actions
that achieve gi

gia2

a1

p1

q1

p2

q2

a3

p3

q3

Preconds = {p1, q1, p3, q3}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

50Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-based Landmark ComputationRPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

Φ = {p1∨p3, p1∨q3, q1∨p3, q1∨q3, p1∨q1∨p3,
 p1∨q1∨q3, p1∨p3∨q3, q1∨p3∨q3, p1∨q1∨p3∨q3}

gia2

a1

p1

q1

p2

q2

a3

p3

q3

Queue = ⟨p1∨p3, p1∨q3, q1∨p3, q1∨q3⟩

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

51Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

Queue = ⟨loc(r1)=d3, loc(c1)=r1⟩

Examined = ∅

RPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined true in s0

add to Queue

Example
load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l,
 loc(r)=l
 eff: cargo(r)←c, loc(c)←r
move(r, d, e)
 pre: loc(r)=d
 eff: loc(r)←e
unload(r, c, l)
 pre: loc(c)=r, loc(r)=l
 eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

d2d1

d3
r1

c1

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

52Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

Example
load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l,
 loc(r)=l
 eff: cargo(r)←c, loc(c)←r
move(r, d, e)
 pre: loc(r)=d
 eff: loc(r)←e
unload(r, c, l)
 pre: loc(c)=r, loc(r)=l
 eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

Queue = ⟨loc(c1)=r1⟩

Examined = ∅
φ = loc(r1)=d3 ß s0 ⊨ φ

d2d1

d3
r1

c1

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

53Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

Queue = ⟨⟩

Examined = ∅
φ = loc(c1)=r1 ß s0 ⊭ φ
R = {load(r1,c1,d1), load(r1,c1,d2),
 load(r1,c1,d3)}

Example
load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l,
 loc(r)=l
 eff: cargo(r)←c, loc(c)←r
move(r, d, e)
 pre: loc(r)=d
 eff: loc(r)←e
unload(r, c, l)
 pre: loc(c)=r, loc(r)=l
 eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

Relaxed planning graph using A ∖ R

ŝ0:
 loc(c1)=d1
 loc(r1)=d3
 cargo(r1)=nil

A1:
 move(r1,d3,d1)
 move(r1,d3,d2)

both ŝ1 and ŝ2:
 loc(r1)=d1
 loc(r1)=d2
 loc(c1)=d1
 loc(r1)=d3
 cargo(r1)=nil

From ŝ0

A ∖ R = {the move and
 unload actions}

d2d1

d3
r1

c1

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

54Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

Example
load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l,
 loc(r)=l
 eff: cargo(r)←c, loc(c)←r
move(r, d, e)
 pre: loc(r)=d
 eff: loc(r)←e
unload(r, c, l)
 pre: loc(c)=r, loc(r)=l
 eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

load (r1, c1, d)
 pre: cargo(r1) = nil,
 loc(c1) = d,
 loc(r1) = d

Queue = ⟨⟩

Examined = ∅
φ = loc(c1)=r1
R = {load(r1,c1,d1), load(r1,c1,d2),
 load(r1,c1,d3)}
N = {load(r1,c1,d1)}

Relaxed planning graph using A ∖ R

ŝ0:
 loc(c1)=d1
 loc(r1)=d3
 cargo(r1)=nil

A1:
 move(r1,d3,d1)
 move(r1,d3,d2)

both ŝ1 and ŝ2:
 loc(r1)=d1
 loc(r1)=d2
 loc(c1)=d1
 loc(r1)=d3
 cargo(r1)=nil

From ŝ0
d2d1

d3
r1

c1

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

55Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

Example
load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l,
 loc(r)=l
 eff: cargo(r)←c, loc(c)←r
move(r, d, e)
 pre: loc(r)=d
 eff: loc(r)←e
unload(r, c, l)
 pre: loc(c)=r, loc(r)=l
 eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

Queue = ⟨cargo(r1)=nil, loc(c1)=d1,
loc(r1)=d1⟩
Examined = {loc(c1)=r1}
φ = loc(c1)=r1
R = {load(r1,c1,d1), load(r1,c1,d2),
 load(r1,c1,d3)}
N = {load(r1,c1,d1)}
Φ = {cargo(r1)=nil, loc(c1)=d1,
loc(r1)=d1, …}

load (r1, c1, d1)
 pre: cargo(r1) = nil,
 loc(c1) = d1,
 loc(r1) = d1

d2d1

d3
r1

c1

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

56Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

Example
load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l,
 loc(r)=l
 eff: cargo(r)←c, loc(c)←r
move(r, d, e)
 pre: loc(r)=d
 eff: loc(r)←e
unload(r, c, l)
 pre: loc(c)=r, loc(r)=l
 eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

Queue = ⟨ loc(c1)=d1, loc(r1)=d1⟩

Examined = {loc(c1)=r1}
φ = cargo(r1)=nil ß s0 ⊨ φ
R = {load(r1,c1,d1), load(r1,c1,d2),
 load(r1,c1,d3)}
N = {load(r1,c1,d1)}
Φ = {cargo(r1)=nil, loc(c1)=d1,
loc(r1)=d1, …}

d2d1

d3
r1

c1

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

57Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

Example
load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l,
 loc(r)=l
 eff: cargo(r)←c, loc(c)←r
move(r, d, e)
 pre: loc(r)=d
 eff: loc(r)←e
unload(r, c, l)
 pre: loc(c)=r, loc(r)=l
 eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

Queue = ⟨ loc(r1)=d1⟩

Examined = {loc(c1)=r1}
φ = loc(c1)=d1 ß s0 ⊨ φ
R = {load(r1,c1,d1), load(r1,c1,d2),
 load(r1,c1,d3)}
N = {load(r1,c1,d1)}
Φ = {cargo(r1)=nil, loc(c1)=d1,
loc(r1)=d1, …}

d2d1

d3
r1

c1

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

58Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

Example
load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l,
 loc(r)=l
 eff: cargo(r)←c, loc(c)←r
move(r, d, e)
 pre: loc(r)=d
 eff: loc(r)←e
unload(r, c, l)
 pre: loc(c)=r, loc(r)=l
 eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

A ∖ R = {load(r1,c1,l),
 unload(r1,c1,l),
 move(r1,d,d2),
 move(r1,d,d3)}

Queue = ⟨⟩

Examined = {loc(c1)=r1}
φ = loc(r1)=d1 ß s0 ⊭ φ
R = {move(r1,d2,d1),
 move(r1,d3,d1)}
N = {load(r1,c1,d1)}
Φ = {cargo(r1)=nil, loc(c1)=d1,
loc(r1)=d1, …}

ŝk = {loc(r1)=d2, loc(r1)=d3,
 loc(c1)=d1,
 cargo(r1)=nil}d2d1

d3
r1

c1

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

59Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

Example
load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l,
 loc(r)=l
 eff: cargo(r)←c, loc(c)←r
move(r, d, e)
 pre: loc(r)=d
 eff: loc(r)←e
unload(r, c, l)
 pre: loc(c)=r, loc(r)=l
 eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

Queue = ⟨⟩

Examined = {loc(c1)=r1}
φ = loc(r1)=d1
R = {move(r1,d2,d1),
 move(r1,d3,d1)}
N = {move(r1,d2,d1)

move(r1,d3,d1)}
Φ = {cargo(r1)=nil, loc(c1)=d1,
loc(r1)=d1, …}

ŝk = {loc(r1)=d2, loc(r1)=d3,
 loc(c1)=d1,
 cargo(r1)=nil}

move(r1, d2, d1)
 pre: loc(r1) = d2
 eff: loc(r1) ← d1
move(r1, d3, d1)
 pre: loc(r1) = d3
 eff: loc(r1) ← d1

d2d1

d3
r1

c1

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

60Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

Example
load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l,
 loc(r)=l
 eff: cargo(r)←c, loc(c)←r
move(r, d, e)
 pre: loc(r)=d
 eff: loc(r)←e
unload(r, c, l)
 pre: loc(c)=r, loc(r)=l
 eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

Queue = ⟨loc(r1)=d2 ∨ loc(r1)=d3⟩

Examined = {loc(c1)=r1, loc(r1)=d1}
φ = loc(r1)=d1
R = {move(r1,d2,d1),
 move(r1,d3,d1)}
N = {move(r1,d2,d1)

move(r1,d3,d1)}
Φ = {loc(r1)=d2 ∨ loc(r1)=d3}

move(r1, d2, d1)
 pre: loc(r1) = d2
 eff: loc(r1) ← d1
move(r1, d3, d1)
 pre: loc(r1) = d3
 eff: loc(r1) ← d1

d2d1

d3
r1

c1

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

61Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

Example
load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l,
 loc(r)=l
 eff: cargo(r)←c, loc(c)←r
move(r, d, e)
 pre: loc(r)=d
 eff: loc(r)←e
unload(r, c, l)
 pre: loc(c)=r, loc(r)=l
 eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

Queue = ⟨⟩

Examined = {loc(c1)=r1, loc(r1)=d1}
φ = loc(r1)=d2 ∨ loc(r1)=d3
R = {move(r1,d2,d1), ↑ s0 ⊨ φ
 move(r1,d3,d1)}
N = {move(r1,d2,d1)

move(r1,d3,d1)}
Φ = {loc(r1)=d2 ∨ loc(r1)=d3}

d2d1

d3
r1

c1

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

62Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-Landmarks(Σ, s0, g)
Queue ← ⟨all literals in g⟩; Examined ← ∅
while Queue ≠ ⟨⟩ do

φ ← pop(Queue)
if φ ∉ Examined and s0 ⊭ φ then

// Step 1: look for an “action landmark”
R ← {actions whose effects include a literal in φ}
generate RPG from s0 using A ∖ R, stopping when ŝk = ŝk–1

// ŝk now includes every atom that’s achievable without R
N ← {all actions in R that are r-applicable in ŝk}
if N = ∅ then return failure

// Step 2: get new landmarks from actions’ preconditions
Φ ← {p1 ∨ p2 ∨ … ∨ pm | m ≤ 4,
 each pi is a precondition of at least one a ∈ N, and
 each a ∈ N has at least one pi as a precondition}
append to Queue every φ ∈ Φ that isn’t subsumed by another φ′ ∈ Φ
add φ to Examined

return Examined

Example
load(r, c, l)
 pre: cargo(r)=nil, loc(c)=l,
 loc(r)=l
 eff: cargo(r)←c, loc(c)←r
move(r, d, e)
 pre: loc(r)=d
 eff: loc(r)←e
unload(r, c, l)
 pre: loc(c)=r, loc(r)=l
 eff: cargo(r)←nil, loc(c)←l

r ∈ Robots
c ∈ Containers
l,d,e ∈ Locs

d3
r1 c1

g = {loc(r1)=d3, loc(c1)=r1}

Queue = ⟨⟩

Examined = {loc(c1)=r1, loc(r1)=d1}
φ = loc(r1)=d2 ∨ loc(r1)=d3
R = {move(r1,d2,d1),
 move(r1,d3,d1)}
N = {move(r1,d2,d1)}
Φ = {loc(r1)=d2}

Return 2

d2d1

d3
r1

c1

s0 = {loc(r1)=d3,
cargo(r1)=nil,
loc(c1)=d1}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

65Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Summary

● Search-tree terminology

● 3.1. Forward Search
▸ Forward-search, Forward-Search-Det
▸ cycle-checking
▸ Search algorithms classified by

• (i) node selection
• (ii) pruning

▸ Breadth-first, depth-first, uniform-cost
search

▸ A*, GBFS
▸ DFBB, IDS

● 3.2. Heuristic Functions
▸ Straight-line distance example
▸ Delete-relaxation heuristics

• relaxed states, γ+,
• h+ – minimal relaxed solution heuristic
• hFF – Fast-Forward heuristic
• HFF algorithm – computes hFF

▸ Disjunctive landmarks, RPG-Landmark, hRL

• Get necessary actions by making RPG
for all non-relevant actions

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

