Last update: 11:09 PM, March 7, 2025

Acting, Planning, and Learning

Malik Ghallab, Dana Nau, and Paolo Traverso

Chapter 3 Planning with Deterministic Models

3.1. Forward State-Space Search3.2. Heuristic Functions

Dana S. Nau University of Maryland

with contributions from

Mark "mak" Roberts

Planning as Search

- Most AI planning procedures are search procedures
 - *Search tree*: the data structure the procedure uses to keep track of which paths it has explored

526=366+160 417=317+100

553=300+253

Bucharest

450=450+0

Fagaras

Arad

646=280+366

Sibiu

591=338+253

Sibiu

Search-Tree Terminology

- *Node* \approx a pair $v = (\pi, s)$, where $s = \gamma(s_0, \pi)$
 - In practice, v will contain other things too
 - depth(v), $cost(\pi)$, pointers to parent and children, ...
 - π isn't always stored explicitly, can be computed from the parent pointers
- *children* of $v = \{(\pi, a, \gamma(s, a)) \mid a \text{ is applicable in } s\}$
- *successors* or *descendants* of v:
 - children, children of children, etc.
 - sometimes called a subtree

- ancestors of v
 = {nodes that have v as a successor}
- *initial* or *starting* or *root* node $v_0 = (\langle \rangle, s_0)$
 - root of the search tree
- *path* from the root node: sequence of nodes $\langle v_0, ..., v_n \rangle$ such that each v_i is a child of v_{i-1}
- *height* of search space = length of longest acyclic path from v_0
- *depth* of v= length(π) = length of path from v_0 to v
- branching factor of v
 = number of children of v
- *branching factor* of a search tree = max branching factor of the nodes
- *expand* v: generate all children

3.1. Forward Search

- Nondeterministic algorithm
 - Sound: if an execution trace returns a plan π,
 it's a solution
 - *Complete*: if the planning problem is solvable, at least one of the possible execution traces will return a solution
- Represents a class of deterministic search algorithms
 - Deterministic versions of the nondeterministic choice
 - Which leaf node to expand next
 - Which nodes to prune from the search space
 - They'll all be sound, but not necessarily complete

Deterministic Version

Forward-Search-Det(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \emptyset$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ (i)remove v from *Frontier* add v to *Expanded* if s satisfies g then return π Children $\leftarrow \{(\pi \cdot a, \gamma(s, a)) \mid a \in Applicable(s)\}$ prune 0 or more nodes from (ii)Children, Frontier, Expanded *Frontier* \leftarrow *Frontier* \cup *Children* return failure

- Special cases:
 - depth-first, breath-first, A*, many others
- Classify by
 - how they select nodes (i)
 - how they prune nodes (ii)
- Pruning often includes *cycle-checking*:
 - Remove from *Children* every node (π,s) that has an ancestor (π',s') such that s' = s
- In classical planning problems, *S* is finite
 - Cycle-checking will guarantee termination

Breadth-First Search (BFS)

Forward-Search-Det(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \emptyset$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ *(i)* remove v from *Frontier* add v to *Expanded* if s satisfies g then return π *Children* \leftarrow {(π ·a, γ (s,a)) | $a \in Applicable(s)$ } prune 0 or more nodes from (ii)Children, Frontier, Expanded *Frontier* \leftarrow *Frontier* \cup *Children* #1 return failure #3

- (*i*): Select $(\pi, s) \in Frontier$ that has the smallest length (π) , i.e., smallest number of edges
 - Possible tie-breaking rules:
 - left-to-right
 - select smallest h(s) will discuss later
- (*ii*): Remove every $(\pi, s) \in Children \cup Frontier$ such that $s \in Expanded$
 - Thus expand states at most once
- Properties

#4

- Terminates
- Returns solution if one exists
 - shortest, but not least-cost
- Worst-case complexity:
 - memory O(|S|), running time O(b|S|)
 - b = max branching factor
 - |S| = number of states in *S*

Depth-First Search (DFS)

Forward-Search-Det(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \emptyset$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ *(i)* remove v from *Frontier* add v to *Expanded* if s satisfies g then return π *Children* \leftarrow {(π ·a, γ (s,a)) | $a \in Applicable(s)$ } prune 0 or more nodes from (ii)Children, Frontier, Expanded *Frontier* \leftarrow *Frontier* \cup *Children* #1 return failure #3

- (*i*): Select $(\pi, s) \in Frontier$ that has largest length (π) , i.e., largest number of edges
 - Possible tie-breaking rules:
 - left-to-right
 - select smallest h(s) will discuss later
- *(ii)*: Do cycle-checking, then prune all nodes that recursive depth-first search would discard
 - Repeatedly remove from *Expanded* any node that has no children in *Children* U *Frontier* U *Expanded*
- Properties
 - Terminates
 - Returns solution if there is one
 - No guarantees on quality
 - ► Worst-case running time *O*(*b*^{*l*})
 - Worst-case memory O(bl)
 - $b = \max$ branching factor
 - $l = \max$ depth of any node

Uniform-Cost Search

#1

#2

5

75

Forward-Search-Det(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \emptyset$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ *(i)* remove v from *Frontier* add v to *Expanded* if s satisfies g then return π *Children* \leftarrow {(π ·a, γ (s,a)) | $a \in Applicable(s)$ } prune 0 or more nodes from (ii)Children, Frontier, Expanded Frontier \leftarrow Frontier \cup Children return failure 14 12

- (*i*): Select $(\pi, s) \in Frontier$ that has smallest $cost(\pi)$
- (*ii*): Prune every $(\pi, s) \in Children \cup Frontier$ such that *Expanded* already contains a node (π', s)
- Properties
 - Terminates
 - Finds optimal (i.e., least-cost) solution if one exists
 - ► Worst-case time *O*(*b*|*S*|)
 - Worst-case memory O(|S|)

Poll: If node v is expanded before node v', then how are cost(v) and cost(v') related? A. cost(v) < cost(v')B. $cost(v) \le cost(v')$ C. $cost(v) \ge cost(v')$ D. $cost(v) \ge cost(v')$ E. none of the above

Heuristic Functions (more about this later)

- Let $h^*(s) = \text{minimum cost of getting to a goal}$ = $\min \{ \cot(\pi) \mid \gamma(s, \pi) \in S_g \}$
 - Note that $h^*(s) \ge 0$ for all *s*
- *heuristic function h(s)*:
 - Returns estimate of h*(s)
 - Require $h(s) \ge 0$ for all s
- Example:
 - s = the city you're in
 - Action: follow road from s to a neighboring city
 - h*(s) = smallest distance to Bucharest using roads
 - h(s) =straight-line distance from *s* to Bucharest

straight-line dist. from s to Bucharest Arad 366 **Bucharest** 0 Craiova 160 Dobreta 242 Fagaras 176 226 lasi 244 Lugoj Mehadia 241 Neamt 234 Oradea 380 Pitesti 100 **Rimnicu Vilcea** 193 Sibiu 253 Timisoara 329 Urziceni 80 Vaslui 199 374 Zerind

Credit: Stuart Russell, lecture slides for *Artificial Intelligence: A Modern Approach*

Greedy Best-First Search (GBFS)

Forward-Search-Det(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ Expanded $\leftarrow \emptyset$ while Frontier $\neq \emptyset$ do (*i*) select a node $v = (\pi, s) \in$ Frontier remove v from Frontier

add v to *Expanded*

if s satisfies g then return π

Children \leftarrow {(π ·a, γ (s,a)) | $a \in Applicable(s)$ }

 (ii) prune 0 or more nodes from Children, Frontier, Expanded
 Frontier ← Frontier ∪ Children
 return failure

> Poll: Have you seen GBFS before? A. yes

B. no

C. yes, but I don't remember it very well

- Idea: choose a node that's likely to be close to a goal
- Node selection:
 - Select a node $v = (\pi, s) \in Frontier$ for which h(s) is smallest
 - Possible tie-breaking rule: choose oldest
- Pruning: should at least include cycle checking.
 - For other cases where two nodes go to the same state s, several possibilities:
 - Prune one of the nodes arbitrarily
 - Prune the higher-cost node
 - Do no pruning (with a good heuristic function, GBFS is unlikely to expand both nodes)
- Properties
 - Terminates; returns a solution if one exists
 - Solution is usually found quickly, often near-optimal

*

Forward-Search-Det(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \emptyset$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ remove v from *Frontier* add v to *Expanded* if s satisfies g then return π *Children* \leftarrow {(π ·a, γ (s,a)) | $a \in Applicable(s)$ } prune 0 or more nodes from (ii)Children, Frontier, Expanded *Frontier* \leftarrow *Frontier* \cup *Children* return failure

(i)

Poll: Have you seen A* before? A. yes B. no C. yes, but I don't remember it very well

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

- Idea: try to choose a node on an optimal path from s_0 to goal
- Node selection
 - Select a node $v = (\pi, s)$ in *Frontier* that has smallest value of $f(v) = cost(\pi) + h(s)$
 - Possible tie-breaking rule: select oldest
- Pruning:
 - for every node $v = (\pi, s)$ in *Children*:
 - If *Children* \cup *Frontier* \cup *Expanded* contains another node with the same state *s*, then we've found multiple paths to s
 - Keep only the one with the lowest cost
 - If more than one such node, keep the oldest
- Properties (in classical planning problems):
 - *Termination*: Always terminates
 - *Complete*: returns a solution if one exists
 - Optimality: can guarantee this under certain conditions (I'll discuss later)

vs 450 for GBFS

			straight-line di	st.
Ad	missibility		<u>from <i>s</i> to Buch</u>	arest
• Notation:			Arad	366
(-x) and $-iz$ the along for a single frame x	Poll: If h	$(\mathbf{s}) = \mathbf{straight}_{-1}$	Bucharest	0
• $v = (\pi, s)$, where π is the plan for going from s_0	$_{\rm O}$ to S I on. 11 n	S) - Strangint-Inic	Craiova	160
• $h^*(s) = \min \{ \operatorname{cost}(\pi') \mid \gamma(s,\pi') \text{ satisfies } g \}$	listance i	form s to Bucharest, is	Dobreta	242
$f^{*}(y) = cost(\pi) + h^{*}(s)$	<i>n</i> admissi	ole?	Fagaras	1/0
$f'(v) = \operatorname{COSI}(n) + n'(s)$	A Vez	D Ma C Matana		220
• $f(v) = \operatorname{cost}(\pi) + h(s)$	A. Yes	B. NO C. Not sure	Mehadia	244
^{Ora}	adea		Neamt	234
71/			Oradea	380
• Definition: h is admissible if ϕ_{Zerind}	\ . <u>.</u> .	Neamt O 87	Pitesti	100
for every s, $h(s) \le h^*(s)$ 75/			lasi Rimnicu Vilcea	193
Arad Arad 14	D \	\backslash	Sibiu	253
	Sibiu oo Fagara	as	92 Timisoara	329
• Optimality: 118		Vas		80
▶ if <i>h</i> is admissible then every	80 Pimpicu Vilcon			199
solution returned by $\Delta *$ will		142	Zerind	3/4
be entired (least east)	Dita		/	
be optimal (least cost)	Lugoj 97			
7		85 OUrz	ziceni	
-	O Mehadia	X		
/	5	(Bucharest) goal		
Dobreta				
	~ Craiova			

Ad

71

Tir

75

Arad (

118

Notation:

- $v = (\pi, s)$, where π is the plan for going from s_0
- $h^*(s) = \min \{ \cot(\pi') \mid \gamma(s,\pi') \text{ satisfies } g \}$
- $f^{*}(v) = \cot(\pi) + h^{*}(s)$
- $f(v) = \cot(\pi) + h(s)$
- Definition: *h* is *admissible* if for every *s*, $h(s) \le h^*(s)$
- *Optimality:*
 - if *h* is admissible then every solution returned by A* will be optimal (least cost)

Admissibility			straight-line dist.	
			from s to Bucha	irest
		1	Arad	366
	Poll : If <i>h</i> is admissible, does it follow that		Bucharest	0
om s_0 to s	for every expanded node $v, f(v) \le f^*(v)$?		Craiova	160
	Pall : If <i>h</i> is admissible does it follow that		Dobreta	242
	for every node $y_{-}f(y) < f^{*}(y)$?		Fagaras	1/6
	For every node $v, j(v) \ge j(v)$.		IdSI	220
	A. Yes B. No C. Not sure		Mehadia	244 241
]	Neamt	234
Forward-Search-Det(Σ, s_0, g)			Oradea	380
Frontier $\leftarrow \{(\langle \rangle, s_0)\}$			Pitesti	100
<i>Expanded</i> $\leftarrow \phi$			Rimnicu Vilcea	193
while <i>Frontier</i> $\neq \emptyset$ do			Sibiu	253
select a node $v = (\pi, s) \in Frontier$		2	Timisoara	329
remove v from <i>Frontier</i>		þ	Vaslui	80 199
add v to <i>Expanded</i>			Zerind	374
if s satisfies g then return π				
Childr	$en \leftarrow \{(\pi \cdot a, \gamma(s, a)) \mid a \in Applicable(s)\}$			
prune	0 or more nodes from			
Ch	ildren, Frontier, Expanded			
Fronti	$er \leftarrow Frontier \cup Children$			
return fa	ilure			

- Definition:
 - Let h_1 , h_2 be admissible heuristic functions
 - h_2 dominates h_1 if $\forall s$, $h_1(s) \le h_2(s) \le h^*(s)$

- Suppose h_2 dominates h_1 , and A* always resolves ties in favor of the same node. Then
 - A* with h_2 will never expand more nodes than A* with h_1
 - In most cases, A* with h_2 will expand fewer nodes than A* with h_1

straight-line dist.

Digression

- Straight-line distance to Bucharest is a *domain-specific* heuristic function
 - OK for planning a path to Bucharest
 - Not for other planning problems
- *Domain-independent* heuristic function:
 - A heuristic function that can be used in any classical planning domain
 - Many such heuristics (see Section 3.2)

Properties of A*

In classical planning problems:

- *Termination:* A* will always terminate
- *Completeness:* if the problem is solvable, A* will return a solution
- *Optimality:* if *h* is admissible then the solution will be optimal (least cost)
- *Dominance:* If h_2 dominates h_1 and if A* always resolves ties the same way
 - A* with h₂ will never expand more nodes than A* with h₁
 - In most cases, A* with h₂ will expand fewer nodes than A* with h₁

- A* needs to store every node it visits
 - Running time O(b|S|) and memory O(|S|) in worst case
 - With good heuristic function, usually much smaller
- The book discusses additional properties

Comparison

- If *h* is admissible, A* will return optimal solutions
 - But running time and memory requirement grow exponentially in *b* and *d*
- GBFS returns the first solution it finds
 - ► There are cases where GBFS takes more time and memory than A*
 - But with a good heuristic function, such cases are rare
 - On classical planning problems with a good heuristic function
 - GBFS usually near-optimal solutions
 - GBFS does very little backtracking
 - Running time and memory requirement usually much less than A*
 - GBFS is used by most classical planners nowadays

Depth-First Branch and Bound (DFBB)

- Basic idea:
 - depth-first search, but don't stop at the first solution
 - π^* = best solution so far
 - $c^* = \operatorname{cost}(\pi^*)$
 - prune v if $f(v) \ge c^*$
 - when frontier is empty, return π^*
- Properties
 - Termination, completeness, optimality same as A*
 - Usually less memory, more time than A*
 - Worst-case like DFS:
 - O(bl) memory, $O(b^l)$ time

- Forward-Search-Det(Σ , s_0 , g) Frontier $\leftarrow \{(\langle \rangle, s_0)\}$ *Expanded* $\leftarrow \emptyset$ $c^* \leftarrow \infty; \pi^* \leftarrow failure$ while *Frontier* $\neq \emptyset$ do select a node $v = (\pi, s) \in Frontier$ *(i)* remove v from *Frontier* add v to *Expanded* if s satisfies g then return π if *s* satisfies *g* and $cost(\pi) < c^*$ then $c^* \leftarrow \operatorname{cost}(\pi); \pi^* \leftarrow \pi$ (*ii*) else if $f(v) < c^*$ then *Children* \leftarrow $\{(\pi \cdot a, \gamma(s, a)) \mid a \in Applicable(s)\}$
- (*iii*) prune 0 or more nodes from *Children*, *Frontier*, *Expanded Frontier* \leftarrow *Frontier* \cup *Children* return failure π^*

Poll: Have you seen DFBB before?A. yesB. noC. yes, but don't remember it very well

- Can write it as a modified version of Forward-Search-Det
- Node selection:
 (*i*) same as in DFS
- Pruning:

(*ii*) If $f(v) \ge c^*$ then discard (*iii*) Otherwise prune the same nodes as in DFS

• Don't stop until every node has been visited or pruned

Comparisons

- If *h* is admissible, both A* and DFBB will return optimal solutions
 - Usually DFBB generates more nodes, but A* takes more memory
 - Worst case for DFBB:
 - Highly connected graphs (many paths to each state)
 - Can have exponentially worse running time than A* (generates nodes exponentially many times)
 - Best case for DFBB:
 - Search space is a tree of uniform height, all solutions at the bottom (e.g., constraint satisfaction)
 - DFBB and A* have similar running time
 - A* can take exponentially more memory than DFBB
- DFS returns the first solution it finds
 - can take much less time than DFBB
 - but solution can be very far from optimal

Iterative Deepening (IDS)

$\mathsf{IDS}(\Sigma, s_0, g)$

for k = 1 to ∞ do

do a depth-first search, backtracking at every node of depth k if the search found a solution then return it

if the search generated no nodes of depth *k* then return failure

• Nodes generated:

a,b,c a,b,c,d,e,f,g a,b,c,d,e,f,g,h,i,j,k,l,m,n,o

- Solution path *(a,c,g,o)*
- Total number of nodes generated: 3+7+15 = 25
- If goal is at depth *d* and branching factor is 2:
 - $\sum_{1}^{d} (2^{i+1}-1) = \sum_{1}^{d} 2^{i+1} \sum_{1}^{d} 1 = O(2^{d})$

Poll: Have you seen IterativeDeepening before?A. yesB. noC. yes, but I don't remember it very well

Poll: How many nodes generated if branching factor is *b* instead of 2?

- A. $O(b2^d)$
- B. $O((b/2)^d)$
- C. $O(b^d)$
- D. $O(b^{d+1})$
- E. something else

Iterative Deepening (IDS)

$\mathsf{IDS}(\Sigma, s_0, g)$

for k = 1 to ∞ **do**

do a depth-first search, backtracking at every node of depth k if the search found a solution then return it

if the search generated no nodes of depth *k* then return failure

• Nodes generated:

a,b,c a,b,c,d,e,f,g a,b,c,d,e,f,g,h,i,j,k,l,m,n,o

- Solution path *(a,c,g,o)*
- Total number of nodes generated: 3+7+15 = 25
- If goal is at depth *d* and branching factor is 2:
 - $\sum_{1}^{d} (2^{i+1}-1) = \sum_{1}^{d} 2^{i+1} \sum_{1}^{d} 1 = O(2^{d})$

Properties:

- Termination, completeness, optimality
 - same as BFS
- Memory (worst case): O(bd)

• vs. $O(b^d)$ for BFS

- If the number of nodes grows exponentially with *d*:
 - worst-case running time
 O(b^d), vs. O(b^l) for DFS
 - b = max branching factor
 - l = max depth of any node
 - d = min solution depth if there is one, otherwise l

3.2. Heuristic Functions

- Given: planning problem P in domain Σ
- One way to create a heuristic function:
 - Weaken some of the constraints, get additional solutions
 - *Relaxed* planning domain Σ' and relaxed problem $P' = (\Sigma', s_0, g')$ such that
 - every solution for P is also a solution for P'
 - additional solutions with lower cost
 - Suppose we have an algorithm A for solving planning problems in Σ'
 - Heuristic function $h_A(s)$ for *P*:
 - Find a solution π' for (Σ', s, g') ; return $cost(\pi')$
 - Useful if A runs quickly
 - If A always finds optimal solutions, then h_A is admissible

- Relaxation: let vehicle travel in a straight line between any pair of cities
 - ► straight-line-distance ≤ distance by road
 - \Rightarrow additional solutions with lower cost

straight-line dist.		
from s to Bucharest		
Arad	366	
Bucharest	0	
Craiova	160	
Dobreta	242	
Fagaras	176	
lasi	226	
Lugoj	244	
Mehadia	241	
Neamt	234	
Oradea	380	
Pitesti	100	
Rimnicu Vilcea	193	
Sibiu	253	
Timisoara	329	
Urziceni	80	
Vaslui	199	
Zerind	374	

Domain-independent Heuristics

- Use relaxation to get heuristic functions that can be used in any classical planning problem
 - Delete-relaxation heuristics
 - Optimal relaxed solution
 - Fast-Forward heuristic
 - Landmark heuristics
 - Max-cost and additive-cost heuristics (I'll skip these)

3.2.1. Delete-Relaxation

- Allow a state variable to have more than one value at the same time
- When assigning a new value, keep the old one too
- *Relaxed state-transition function*, γ^+
 - If action *a* is applicable to state *s*, then $\gamma^+(s,a) = s \cup \gamma(s,a)$

- If *s* includes an atom x=v, and *a* has an effect $x \leftarrow w$
 - Then $\gamma^+(s,a)$ includes both x=v and x=w
- *Relaxed state* (or *r*-*state*)
 - a set \hat{s} of ground atoms that includes ≥ 1 value for each state variable
 - represents {all states that are subsets of \hat{s} }

 $s_0 = \{ loc(r1) = d3, cargo(r1) = nil, loc(c1) = d1 \}$

 $\hat{s}_1 = \gamma^+(s_0, \text{move}(r1, d3, d1))$ = {loc(r1)=d3, loc(r1)=d1, cargo(r1)=nil, loc(c1)=d1} **Poll**: would this definition be equivalent?

- Action *a* is *r*-applicable in *ŝ* if *ŝ* satisfies *a*'s preconditions
- A. Yes B. No C. don't know
- Action *a* is *r*-applicable in a relaxed state \hat{s} if an *r*-subset of \hat{s} satisfies *a*'s preconditions
 - a subset with one value per state variable
- If *a* is r-applicable then $\gamma^+(\hat{s}, a) = \hat{s} \cup \gamma(s, a)$

```
load(r, c, l)

pre: cargo(r)=nil, loc(c)=l, loc(r)=l

eff: cargo(r)←c, loc(c)←r

move(r, d, e)

pre: loc(r)=d

eff: loc(r)←e

unload(r, c, l)

pre: loc(c)=r, loc(r)=l

eff: cargo(r)←nil, loc(c)←l
```


Relaxed Applicability (continued)

- Let $\pi = \langle a_1, ..., a_n \rangle$ be a plan
- Suppose we can r-apply the actions of π in the order a₁, ..., a_n:
 - r-apply a_1 in \hat{s}_0 , get $\hat{s}_1 = \gamma^+(\hat{s}_0, a_1)$
 - r-apply a_2 in \hat{s}_1 , get $\hat{s}_2 = \gamma^+(\hat{s}_1, a_2)$
 - ...
 - r-apply a_n in \hat{s}_{n-1} , get $\hat{s}_n = \gamma^+(\hat{s}_{n-1}, a_n)$
- Then π is *r*-applicable in \hat{s}_0 and $\gamma^+(\hat{s}_0, \pi) = \hat{s}_n$
- Example: if s_0 and \hat{s}_2 are as shown, then $\gamma^+(s_0, \langle move(r1,d3,d1), load(r1,c1,d1) \rangle) = \hat{s}_2$

Relaxed Solution

- An r-state \hat{s} r-satisfies a formula g if an r-subset of \hat{s} satisfies g
 - a subset with one value per state variable
- *Relaxed solution* for a planning problem $P = (\Sigma, s_0, g)$:
 - a plan π such that $\gamma^+(s_0, \pi)$ r-satisfies g
- Example: let *P* be as shown
 - \hat{s}_2 r-satisfies g
 - So $\pi = \langle move(r1,d3,d1), load(r1,c1,d1) \rangle$ is a relaxed solution for P

- Planning problem $P = (\Sigma, s_0, g)$
- *Optimal relaxed solution* heuristic:
 - h⁺(s) = minimum cost of all relaxed solutions for (Σ, s, g)
- Example: $s = s_0$
- π = (move(r1,d3,d1), load(r1,c1,d1))
 - $cost(\pi) = 2$
- No less-costly relaxed solution, so $h^+(s_0) = 2$

 ∞

d2

d2

d2

- GBFS with initial state s_0 , goal g, heuristic h^+
- Applicable actions a_1 , a_2 produce states s_1 , s_2
- GBFS computes $h^+(s_1)$ and $h^+(s_2)$, chooses the state that has the lower h^+ value

Fast-Forward Heuristic

- Every state is also a relaxed state
- Every solution is also a relaxed solution
- $h^+(s) =$ minimum cost of all relaxed solutions
 - ► Thus *h*⁺ is admissible
- Problem: computing $h^+(s)$ is NP-hard
- Fast-Forward Heuristic, h^{FF}
 - An approximation of h^+ that's easier to compute
 - Upper bound on h^+
 - Name comes from a planner called Fast-Forward

Preliminaries

- Suppose a_1 and a_2 are r-applicable in \hat{s}_0
- Let $\hat{s}_1 = \gamma^+(\hat{s}_0, a_1) = \hat{s}_0 \cup \text{eff}(a_1)$
- Then a_2 is still applicable in \hat{s}_1
 - $\hat{s}_2 = \gamma^+(\hat{s}_1, a_2) = \hat{s}_0 \cup \text{eff}(a_1) \cup \text{eff}(a_2)$
- Apply a_1 and a_2 in the opposite order \Rightarrow same state \hat{s}_2
- Let A_1 be a set of actions that all are r-applicable in \hat{s}_0
 - Can r-apply them in any order and get same result
 - $\hat{s}_1 = \gamma^+(\hat{s}_0, A_1) = \hat{s}_0 \cup \text{eff}(A_1)$
 - where $\operatorname{eff}(A_1) = \bigcup \{\operatorname{eff}(a) \mid a \in A_1\}$
- Suppose A_2 is a set of actions that are r-applicable in \hat{s}_1
 - \hat{s}_1 satisfies $pre(A_2) = \bigcup \{ pre(a) \mid a \in A_2 \}$
 - $\hat{s}_2 = \gamma^+(\hat{s}_0, \langle A_1, A_2 \rangle) = \hat{s}_0 \cup \operatorname{eff}(A_1) \cup \operatorname{eff}(A_2)$
- Define $\gamma^+(\hat{s}_0, \langle A_1, A_2, \dots, A_n \rangle)$ in the obvious way

 $s_0 = \{ loc(r1) = d1, cargo(r1) = nil, loc(c1) = d1 \}$ $a_1 = load(r1, c1, d1)$ $a_2 = move(r1,d1,d3)$ $A_1 = \{a_1, a_2\}$ $\gamma^+(s_0, A_1) = \{ loc(r1) = d1, loc(r1) = d3, \}$ cargo(r1)=nil, cargo(r1)=c1, loc(c1)=d1, loc(c1)=r1r1 α d3 c1 d2 d1

Fast-Forward Heuristic

1. At each iteration, include all r-applicable actions

2. At each iteration, choose a minimal set of actions that r-achieve \hat{g}_i

// find a minimal relaxed solution, return its cost $\mathsf{HFF}(\Sigma, s, g)$: // construct a relaxed solution $\langle A_1, A_2, \dots, A_k \rangle$: $\hat{s}_0 \leftarrow s$ \prec for k = 1 by 1 until \hat{s}_k r-satisfies g $A_k \leftarrow \{\text{all actions r-applicable in } \hat{s}_{k-1}\}; \hat{s}_k \leftarrow \gamma^+(s_{k-1}, A_k)$ if k > 1 and $\hat{s}_k = \hat{s}_{k-1}$ then return ∞ // there's no solution // extract minimal relaxed solution $\langle \hat{a}_1, \hat{a}_2, ..., \hat{a}_k \rangle$: $\operatorname{pre}(\hat{a}_i) = \bigcup \{ \operatorname{pre}(a) \mid a \in \hat{a}_i \}$ $\operatorname{eff}(\hat{a}_i) = \bigcup \{\operatorname{eff}(a) \mid a \in \hat{a}_i\}$ $\hat{g}_k \leftarrow g$ for i = k, k-1, ..., 1: $\hat{a}_i \leftarrow$ any minimal subset of A_i such that $\gamma^+(\hat{s}_{i-1}, \hat{a}_i)$ r-satisfies \hat{g}_i

/ i.e., no proper subset is a relaxed solution

 $\hat{g}_{i-1} \leftarrow (\hat{g}_i \setminus \text{eff}(\hat{a}_i)) \cup \text{pre}(\hat{a}_i)$ return $\sum \text{ costs of the actions in } \hat{a}_1, \dots, \hat{a}_k \quad // \text{ upper bound on } h^+$

ambiguous \longrightarrow • Define $h^{\text{FF}}(s)$ = the value returned by $\text{HFF}(\Sigma, s, g)$

- Computing $h^{\text{FF}}(s_1)$
 - 1. construct a relaxed solution
 - at each step, include all r-applicable actions

 $s_1 = \{loc(r1)=d1, cargo(r1)=nil, loc(c1)=d1\}$

 $g = \{ \mathsf{loc}(\mathsf{r1}) = \mathsf{d3}, \mathsf{loc}(\mathsf{c1}) = \mathsf{r1} \}$

// construct a relaxed solution $\langle A_1, A_2, ..., A_k \rangle$: $\hat{s}_0 \leftarrow s$ for k = 1 by 1 until \hat{s}_k r-satisfies g $A_k \leftarrow \{\text{all actions r-applicable in } \hat{s}_{k-1}\}; \hat{s}_k \leftarrow \gamma^+(s_{k-1}, A_k)$ if k > 1 and $\hat{s}_k = \hat{s}_{k-1}$ then return ∞

Relaxed Planning Graph (RPG) starting at $\hat{s}_0 = s_1$

- Computing $h^{\text{FF}}(s_1)$
 - 2. extract a minimal relaxed solution
 - if you remove any actions from it, it's no longer a relaxed solution

 $s_1 = \{loc(r1)=d1, cargo(r1)=nil, loc(c1)=d1\}$

 $g = \{ loc(r1)=d3, loc(c1)=r1 \}$

// extract minimal relaxed solution $\langle \hat{a}_1, \hat{a}_2, ..., \hat{a}_k \rangle$: $\hat{g}_k \leftarrow g$ for i = k, k-1, ..., 1: $\hat{a}_i \leftarrow$ any minimal subset of A_i such that $\gamma^+(\hat{s}_{i-1}, \hat{a}_i)$ r-satisfies \hat{g}_i $\hat{g}_{i-1} \leftarrow (\hat{g}_i \setminus \text{eff}(\hat{a}_i)) \cup \text{pre}(\hat{a}_i)$

Solution extraction starting at $\hat{g}_1 = g$

Atoms in
$$\hat{s}_0 = s_1$$
: Actions in A_1 : Atoms in \hat{s}_1 :

$$\begin{vmatrix} \text{loc}(\mathbf{r1}) = \mathbf{d1} & \text{move}(\mathbf{r1}, \mathbf{d1}, \mathbf{d2}) & -\text{loc}(\mathbf{r1}) = \mathbf{d2} \\ \text{loc}(\mathbf{c1}) = \mathbf{d1} & \text{move}(\mathbf{r1}, \mathbf{d1}, \mathbf{d3}) & -\text{loc}(\mathbf{r1}) = \mathbf{d3} \\ \text{loc}(\mathbf{c1}) = \mathbf{d1} & \text{load}(\mathbf{r1}, \mathbf{c1}, \mathbf{d1}) & -\text{loc}(\mathbf{c1}) = \mathbf{r1} \\ \hat{g}_0 & \hat{a}_1 & \text{cargo}(\mathbf{r1}) = \mathbf{c1} \\ \hat{g}_0 & \hat{a}_1 & \text{cargo}(\mathbf{r1}) = \mathbf{c1} \\ \text{loc}(\mathbf{c1}) = \mathbf{d1} & \text{loc}(\mathbf{c1}) = \mathbf{d1} \\ \text{from } \hat{s}_0: & \text{loc}(\mathbf{r1}) = \mathbf{d1} \\ \text{cargo}(\mathbf{r1}) = \mathbf{d1} & \text{cargo}(\mathbf{r1}) = \mathbf{d1} \\ \text{cargo}(\mathbf{r1}) = \mathbf{d1} & \text{cargo}(\mathbf{r1}) = \mathbf{d1} \\ \text{cargo}(\mathbf{r1}) = \mathbf{n1} \\ \hat{a}_1 & \text{saminimal relaxed solution} \end{vmatrix}$$

• Two actions, each with cost 1, so $h^{\text{FF}}(s_1) = 2$

• \hat{a}_1

su

- Computing $h^{\text{FF}}(s_2)$
 - 1. construct a relaxed solution
 - at each step, include all r-applicable actions

 $s_2 = \{loc(r1)=d2, cargo(r1)=nil, loc(c1)=d2\}$

// construct a relaxed solution $\langle A_1, A_2, ..., A_k \rangle$: $\hat{s}_0 \leftarrow s$ for k = 1 by 1 until \hat{s}_k r-satisfies g $A_k \leftarrow \{\text{all actions r-applicable in } \hat{s}_{k-1}\}; \hat{s}_k \leftarrow \gamma^+(s_{k-1}, A_k)$ if k > 1 and $\hat{s}_k = \hat{s}_{k-1}$ then return ∞

Atoms in
$$\hat{s}_0 = s_2$$
Atoms in $\hat{s}_1 = s_2$:Atoms in $\hat{s}_0 = s_2$:Actions in A_1 :Atoms in \hat{s}_1 : $move(r1,d3,d2)$ $move(r1,d2,d3)$ $loc(r1) = d2$ $move(r1,d2,d3)$ $loc(r1) = d3$ $move(r1,d3,d1)$ $loc(c1) = d1$ $loc(c1) = d1$ $move(r1,d2,d1)$ $loc(r1) = d2$ $move(r1,d2,d1)$ $loc(r1) = d1$ $loc(r1) = d1$ $move(r1,d2,d1)$ $loc(r1) = d2$ $move(r1,d2,d1)$ $loc(r1) = d3$ $cargo(r1) = nil$ $from \hat{s}_0$: $loc(c1) = d1$ $move(r1,d2,d3)$ $cargo(r1) = c1$ $cargo(r1) = nil$ $from \hat{s}_0$: $loc(c1) = d1$ $move(r1,d2,d3)$ $cargo(r1) = c1$ \hat{s}_2 r-satisfies g, so $\langle A_1, A_2 \rangle$ \hat{s}_2 r-satisfies g, so $\langle A_1, A_2 \rangle$ \hat{s}_2 resatisfies g, so (a_1, a_2)

- Computing $h^{\text{FF}}(s_1)$
 - 2. extract a minimal relaxed solution
 - if you remove any actions from it, it's no longer a relaxed solution

<u>r1</u>

d2

d3

 $s_2 = \{ loc(r1) = d2, cargo(r1) = nil, \}$

d3

 $g = \{ loc(r1) = d3, loc(c1) = r1 \}$

loc(c1)=d2

// extract minimal relaxed solution $\langle \hat{a}_1, \hat{a}_2, ..., \hat{a}_k \rangle$: $\hat{g}_k \leftarrow g$ for i = k, k-1, ..., 1: $\hat{a}_i \leftarrow$ any minimal subset of A_i such that $\gamma^+(\hat{s}_{i-1}, \hat{a}_i)$ r-satisfies \hat{g}_i $\hat{g}_{i-1} \leftarrow (\hat{g}_i \setminus \text{eff}(\hat{a}_i)) \cup \text{pre}(\hat{a}_i)$

- $\langle \hat{a}_1, \hat{a}_2 \rangle$ is a minimal relaxed solution
- each action's cost is 1, so $h^{\text{FF}}(s_2) = 3$

Properties

- Running time is polynomial in $|A| + \sum_{x \in X} |\text{Range}(x)|$
- $h^{\text{FF}}(s)$ = value returned by $\text{HFF}(\Sigma, s, g)$

 $= \sum_{i} \operatorname{cost}(\hat{a}_{i})$ $= \sum_{i} \sum_{i} \left\{ \operatorname{cost}(a) \mid a \in \hat{a}_{i} \right\}$

- each \hat{a}_i is a minimal set of actions such that $\gamma^+(\hat{s}_{i-1}, \hat{a}_i)$ r-satisfies \hat{g}_i
 - *minimal* doesn't mean *smallest*
- $h^{\text{FF}}(s)$ is ambiguous
 - depends on *which* minimal sets we choose
- $h^{\rm FF}$ not admissible
- $h^{\text{FF}}(s) \ge h^+(s) = smallest \text{ cost of any relaxed plan from } s \text{ to goal}$

Poll. Suppose the goal atoms are c7, c8, c9. How many minimal relaxed solutions are there?

1.	1	
2.	2	
3.	3	
4.	4	
5.	5	
6.	6	
7.	7	
8.	≥ 8	

3.2.2. Landmark Heuristics

- $P = (\Sigma, s_0, g)$ be a planning problem
- Let $\varphi = \varphi_1 \vee \ldots \vee \varphi_m$ be a disjunction of ground atoms
- φ is a *disjunctive landmark* for *P* if φ is true at some point in every solution for *P*

$$g = \{ loc(r1) = d3, loc(c1) = r1 \}$$

- Example disjunctive landmarks
 - loc(r1)=d1
 - loc(r1)=d3
 - ▶ loc(r1)=d3 ∨ loc(r1)=d2

From now on, I'll abbreviate "disjunctive landmark" as "landmark"

Why are Landmarks Useful?

• Can break a problem down into smaller subproblems

- Suppose *m* is a landmark
 - Every solution to *P* must achieve *m*
- Possible strategy:
 - find a plan to go from s₀ to any state s₁ that satisfies m
 - find a plan to go from s₁ to any state s₂ that satisfies g

- Suppose m_1 , m_2 , m_3 are landmarks
 - Every solution to P must achieve m₁, then m₂, then m₃
- Possible strategy:
 - find a plan to go from s₀ to any state s₁ that satisfies m₁
 - find a plan to go from s₁ to any state s₂ that satisfies m₂

▶ ...

Computing Landmarks

- Given a formula φ
 - PSPACE-hard (worst case) to decide whether φ is a landmark
 - As hard as solving the planning problem itself
- Some landmarks are easier to find polynomial time
 - Several procedures for finding them
 - I'll show you one based on relaxed planning graphs
- Why use RPGs?
 - Easier to solve relaxed planning problems
 - Easier to find landmarks for them
 - A landmark for a relaxed planning problem is also a landmark for the original planning problem

- Key idea: if φ is a landmark, get new landmarks from the preconditions of the actions that achieve φ
 - ► goal g
 - {actions that achieve g}
 = {a₁, a₂}
 - $\operatorname{pre}(a_1) = \{p_1, q\}$
 - $\operatorname{pre}(a_2) = \{p_2, q\}$
 - To achieve g, must achieve
 (p₁ ∧ q) ∨ (p₂ ∧ q)
 - same as $q \land (p_1 \lor p_2)$
 - Landmarks:
 - q
 - $p_1 \vee p_2$

 a_{2}

RPG-based Landmark Computation

- Suppose goal is $g = \{g_1, g_2, ..., g_k\}$
 - Trivially, every g_i is a landmark
- Suppose $g_1 = loc(r1)=d1$
 - Two actions can achieve g₁:
 move(r1,d3,d1) and move(r1,d2,d1)
- Preconditions loc(r1)=d3 and loc(r1)=d2
- New landmark:
 - φ' = loc(r1)=d3 ∨ loc(r1)=d2

move(r, d, e)pre: loc(r)=d eff: loc(r) \leftarrow e load(r, c, l) pre: cargo(r)=nil, loc(c)=l, loc(r)=l eff: cargo(r) \leftarrow c, loc(c) \leftarrow r unload(r, c, l) pre: loc(c)=r, loc(r)=l eff: cargo(r) \leftarrow nil, loc(c) \leftarrow l

RPG-Landmarks(Σ , s_0 , g)

Queue \leftarrow (all literals in g); Examined $\leftarrow \emptyset$ while Queue \neq () do $\varphi \leftarrow \text{pop}(Queue)$

if $\varphi \notin Examined$ and $s_0 \not\models \varphi$ then

// Step 1: look for an "action landmark"

 $R \leftarrow \{ \text{actions whose effects include a literal in } \varphi \}$

generate RPG from s_0 using $A \setminus R$, stopping when $\hat{s}_k = \hat{s}_{k-1}$ // \hat{s}_k now includes every atom that 's achievable without R $N \leftarrow \{\text{all actions in } R \text{ that are r-applicable in } \hat{s}_k\}$ if $N = \emptyset$ then return failure

// Step 2: get new landmarks from actions ' preconditions Φ ← {p₁ ∨ p₂ ∨ ... ∨ p_m | m ≤ 4, each p_i is a precondition of at least one a ∈ N, and each a ∈ N has at least one p_i as a precondition} append to Queue every φ ∈ Φ that isn't subsumed by another φ' ∈ Φ add φ to Examined return Examined

RPG-based Landmark Computation

RPG-Landmarks(Σ , s_0 , g)

Queue \leftarrow (all literals in g); Examined $\leftarrow \emptyset$ while Queue \neq () do $\varphi \leftarrow pop(Queue)$

if $\varphi \notin Examined$ and $s_0 \not\models \varphi$ then

// Step 1: look for an "action landmark" $R \leftarrow \{ \text{actions whose effects include a literal in } \varphi \}$ generate RPG from s_0 using $A \setminus R$, stopping when $\hat{s}_k = \hat{s}_{k-1}$ // \hat{s}_k now includes every atom that 's achievable without R $N \leftarrow \{ \text{all actions in } R \text{ that are r-applicable in } \hat{s}_k \}$ if $N = \emptyset$ then return failure

// Step 2: get new landmarks from actions ' preconditions
Φ ← {p₁ ∨ p₂ ∨ ... ∨ p_m | m ≤ 4, each p_i is a precondition of at least one a ∈ N, and each a ∈ N has at least one p_i as a precondition}
append to Queue every φ ∈ Φ that isn't subsumed by another φ' ∈ Φ add φ to Examined

return Examined

RPG-based Landmark Computation

RPG-Landmarks(Σ , s_0 , g) Queue \leftarrow (all literals in g); Examined $\leftarrow \emptyset$

while $Queue \neq \langle \rangle$ do

 $\varphi \leftarrow \mathsf{pop}(Queue)$

if $\varphi \notin Examined$ and $s_0 \not\models \varphi$ then

// Step 1: look for an "action landmark" $R \leftarrow \{ \text{actions whose effects include a literal in } \varphi \}$ generate RPG from s_0 using $A \setminus R$, stopping when $\hat{s}_k = \hat{s}_{k-1}$ // \hat{s}_k now includes every atom that 's achievable without R $N \leftarrow \{ \text{all actions in } R \text{ that are r-applicable in } \hat{s}_k \}$ if $N = \emptyset$ then return failure

// Step 2: get new landmarks from actions ' preconditions Φ ← {p₁ ∨ p₂ ∨ ... ∨ p_m | m ≤ 4, each p_i is a precondition of at least one a ∈ N, and each a ∈ N has at least one p_i as a precondition} append to Queue every φ ∈ Φ that isn't subsumed by another φ' ∈ Φ add φ to Examined return Examined

RPG-based Landmark Computation

Preconds = { p_1 , q_1 , p_3 , q_3 }

RPG-Landmarks(Σ , s_0 , g) Queue \leftarrow (all literals in g); Examined $\leftarrow \emptyset$

while $Queue \neq \langle \rangle$ do

 $\varphi \leftarrow \mathsf{pop}(Queue)$ if $\varphi \notin Examined$ and $s_0 \not\models \varphi$ then

// Step 1: look for an "action landmark" $R \leftarrow \{ \text{actions whose effects include a literal in } \varphi \}$ generate RPG from s_0 using $A \setminus R$, stopping when $\hat{s}_k = \hat{s}_{k-1}$ // \hat{s}_k now includes every atom that's achievable without R $N \leftarrow \{ \text{all actions in } R \text{ that are r-applicable in } \hat{s}_k \}$ if $N = \emptyset$ then return failure

// Step 2: get new landmarks from actions ' preconditions Φ ← {p₁ ∨ p₂ ∨ ... ∨ p_m | m ≤ 4, each p_i is a precondition of at least one a ∈ N, and each a ∈ N has at least one p_i as a precondition} append to Queue every φ ∈ Φ that isn't subsumed by another φ' ∈ Φ add φ to Examined return Examined

RPG-based Landmark Computation

 $\Phi = \{ p_1 \lor p_3, \ p_1 \lor q_3, \ q_1 \lor p_3, \ q_1 \lor q_3, \ p_1 \lor q_1 \lor p_3, \ p_1 \lor q_1 \lor q_3, \ p_1 \lor q_1 \lor q_3, \ p_1 \lor q_3 \lor q_3, \ q_1 \lor p_3 \lor q_3, \ p_1 \lor q_1 \lor p_3 \lor q_3 \}$

 $Queue = \langle p_1 \lor p_3, p_1 \lor q_3, q_1 \lor p_3, q_1 \lor q_3 \rangle$

RPG-Landmarks(Σ , s_0 , g)

Queue \leftarrow (all literals in *g*); *Examined* $\leftarrow \emptyset$

while $Queue \neq \langle \rangle$ do

 $\varphi \leftarrow \mathsf{pop}(Queue)$

if $\varphi \notin Examined$ and $s_0 \not\models \varphi$ then

// Step 1: look for an "action landmark" $R \leftarrow \{ \text{actions whose effects include a literal in } \varphi \}$ generate RPG from s_0 using $A \setminus R$, stopping when $\hat{s}_k = \hat{s}_{k-1}$ // \hat{s}_k now includes every atom that's achievable without R $N \leftarrow \{ \text{all actions in } R \text{ that are r-applicable in } \hat{s}_k \}$ if $N = \emptyset$ then return failure

// Step 2: get new landmarks from actions ' preconditions $\Phi \leftarrow \{p_1 \lor p_2 \lor \ldots \lor p_m \mid m \le 4, \\ \text{ each } p_i \text{ is a precondition of at least one } a \in N, \text{ and} \\ \text{ each } a \in N \text{ has at least one } p_i \text{ as a precondition} \} \\ \text{ append to } Queue \text{ every } \varphi \in \Phi \text{ that isn't subsumed by another } \varphi' \in \Phi \\ \text{ add } \varphi \text{ to } Examined \\ \texttt{return } Examined \\ \texttt{randownamely} \\ \texttt{s}_0 = \{ \text{loc}(r1) = \texttt{d3}, \\ \texttt{cargo}(r1) = \texttt{nil}, \\ \texttt{loc}(c1) = \texttt{d1} \} \\ \end{bmatrix}$

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

Queue = (loc(r1)=d3, loc(c1)=r1) *Examined* = Ø

load(*r*, *c*, *l*) pre: cargo(r)=nil, loc(c)=l, loc(r) = leff: cargo(r) $\leftarrow c$, loc(c) $\leftarrow r$ move(r, d, e)pre: loc(r)=deff: $loc(r) \leftarrow e$ unload(r, c, l)pre: loc(c)=r, loc(r)=leff: cargo(r) \leftarrow nil, loc(c) \leftarrow l $r \in Robots$ $c \in Containers$

 $l,d,e \in Locs$

RPG-Landmarks(Σ , s_0 , g) $Queue \leftarrow \langle \text{all literals in } g \rangle$; $Examined \leftarrow \emptyset$ while $Queue \neq \langle \rangle$ do $\varphi \leftarrow \text{pop}(Queue)$ if $\varphi \notin Examined$ and $s_0 \not\models \varphi$ then

> // Step 1: look for an "action landmark" $R \leftarrow \{ \text{actions whose effects include a literal in } \varphi \}$ generate RPG from s_0 using $A \setminus R$, stopping when $\hat{s}_k = \hat{s}_{k-1}$ // \hat{s}_k now includes every atom that is achievable without R $N \leftarrow \{ \text{all actions in } R \text{ that are r-applicable in } \hat{s}_k \}$ if $N = \emptyset$ then return failure

// Step 2: get new landmarks from actions ' preconditions $\Phi \leftarrow \{p_1 \lor p_2 \lor \ldots \lor p_m \mid m \le 4, \\ \text{ each } p_i \text{ is a precondition of at least one } a \in N, \text{ and} \\ \text{ each } a \in N \text{ has at least one } p_i \text{ as a precondition} \} \\ \text{ append to } Queue \text{ every } \varphi \in \Phi \text{ that isn't subsumed by another } \varphi' \in \Phi \\ \text{ add } \varphi \text{ to } Examined \\ \text{ return } examine$

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

 $Queue = \langle loc(c1)=r1 \rangle$ $Examined = \emptyset$ $\varphi = loc(r1)=d3 \leftarrow s_0 \models \varphi$ load(r, c, l) pre: cargo(r)=nil, loc(c)=l, loc(r)=leff: cargo(r) \leftarrow -c, loc(c) \leftarrow -rmove(r, d, e) pre: loc(r)=deff: loc(r) \leftarrow eunload(r, c, l) pre: loc(c)=r, loc(r)=leff: cargo(r) \leftarrow nil, loc(c) \leftarrow l

 $r \in Robots$ $c \in Containers$ $l,d,e \in Locs$

RPG-Landmarks(Σ, s_0, g)	Evampla
Queue \leftarrow (all literals in g); Examined $\leftarrow \emptyset$	Example
while $Queue \neq \langle \rangle$ do	$Oueue = \langle \rangle$
$\varphi \leftarrow pop(Queue)$	
if $\varphi \notin Examined$ and $s_0 \nvDash \varphi$ then	<i>Examined</i> = \emptyset
// Step 1: look for an "action landmark"	$\varphi = loc(c1)=r1$
$R \leftarrow \{actions whose effects include a lite$	eral in φ } $R = \{ load(r1,c1,d1) \}$
generate RPG from s_0 using $A \setminus R$, stoppi	ing when $\hat{s}_k = \hat{s}_{k-1}$ load(r1,c1,d3)
$\frac{1}{\hat{s}_k \text{ now includes every atom that 's achies}}{N \leftarrow \{\text{all actions in } R \text{ that are r-applicable} \\ \text{if } N = \emptyset \text{ then return failure} \\ \frac{1}{Step 2: get new landmarks from actions}}{\Phi \leftarrow \{p_1 \lor p_2 \lor \ldots \lor p_m \mid m \le 4, \\ \text{each } p_i \text{ is a precondition of at least} \\ \text{each } p_i \text{ is a precondition of at least} \\ \text{each } a \in N \text{ has at least one } p_i \text{ as a precondition of at least} \\ \text{append to } Queue every \ \varphi \in \Phi \text{ that isn't state} \\ \end{array}$	evable without R le in \hat{s}_k } $A \setminus R = \{\text{the unless' preconditions} \\ t one a \in N, and precondition}ubsumed by another \varphi' \in \Phi$
add φ to <i>Examined</i> loo return <i>Examined</i> loo d3 ca	$\hat{s}_0:$ $A_1:$ be c(c1)=d1 move(r1,d3,d1)

ble Ø

1 $\leftarrow s_0 \not\models \varphi$,c1,d1), load(r1,c1,d2), .,c1,d3)}

{the move and

Relaxed planning graph using $A \setminus R$

unload actions}

load(*r*, *c*, *l*) pre: cargo(r)=nil, loc(c)=l,loc(r)=leff: $cargo(r) \leftarrow c, loc(c) \leftarrow r$ move(*r*, *d*, *e*) pre: loc(r)=deff: $loc(r) \leftarrow e$ unload(*r*, *c*, *l*) pre: loc(c)=r, loc(r)=leff: $cargo(r) \leftarrow nil, loc(c) \leftarrow l$ $r \in Robots$ $c \in Containers$

```
both \hat{s}_1 and \hat{s}_2:
____ loc(r1)=d1
   - loc(r1)=d2
                                               c1
     loc(c1)=d1
                                         d3
     loc(r1)=d3
                            g = \{ loc(r1)=d3, loc(c1)=r1 \}
     cargo(r1)=nil
```

 $l,d,e \in Locs$

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

d2

d1

RPG-Landmarks(Σ , s_0 , g) Example Queue \leftarrow (all literals in g); Examined $\leftarrow \emptyset$ while $Queue \neq \langle \rangle$ do $Queue = \langle \rangle$ $\varphi \leftarrow \mathsf{pop}(Queue)$ if $\varphi \notin Examined$ and $s_0 \not\models \varphi$ then *Examined* = \emptyset $\varphi = \log(c1) = r1$ // Step 1: look for an "action landmark" $R = \{ load(r1,c1,d1), load(r1,c1,d2), \}$ $R \leftarrow \{ actions whose effects include a literal in <math>\varphi \}$ generate RPG from s_0 using $A \setminus R$, stopping when $\hat{s}_k = \hat{s}_{k-1}$ load(r1,c1,d3) $//\hat{s}_k$ now includes every atom that's achievable without R $N = \{ load(r1,c1,d1) \}$ $N \leftarrow \{\text{all actions in } R \text{ that are r-applicable in } \hat{s}_k\}$ if $N = \emptyset$ then return failure // Step 2: get new landmarks from actions' preconditions load (r1, c1, *d*) $\Phi \leftarrow \{p_1 \lor p_2 \lor \ldots \lor p_m \mid m \le 4,\$ pre: cargo(r1) = nil, each p_i is a precondition of at least one $a \in N$, and loc(c1) = d, each $a \in N$ has at least one p_i as a precondition} loc(r1) = dappend to *Queue every* $\varphi \in \Phi$ that isn't subsumed by another $\varphi' \in \Phi$ add φ to *Examined* both \hat{s}_1 and \hat{s}_2 : A_1 : \hat{S}_0 : return Examined loc(c1)=d1 ____ move(r1,d3,d1) _____ loc(r1)=d1 r1 loc(r1)=d3 _____ move(r1,d3,d2) _____ loc(r1)=d2 ∞ d3 loc(c1)=d1 cargo(r1)=nil From $\hat{s}_0 \neq \text{loc(r1)=d3}$ cargo(r1)=nil d2 *Relaxed planning graph using* $A \setminus R$

load(*r*, *c*, *l*) pre: cargo(*r*)=nil, loc(*c*)=*l*, loc(*r*)=*l* eff: cargo(*r*)←*c*, loc(*c*)←*r* move(*r*, *d*, *e*) pre: loc(*r*)=*d* eff: loc(*r*)←*e* unload(*r*, *c*, *l*) pre: loc(*c*)=*r*, loc(*r*)=*l* eff: cargo(*r*)←nil, loc(c)←*l*

 $r \in Robots$ $c \in Containers$ $l,d,e \in Locs$

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0


```
Queue = \langle cargo(r1)=nil, loc(c1)=d1, \\ loc(r1)=d1 \rangle
Examined = \{ loc(c1)=r1 \}
\varphi = loc(c1)=r1
R = \{ load(r1,c1,d1), load(r1,c1,d2), \\ load(r1,c1,d3) \}
N = \{ load(r1,c1,d1) \}
\Phi = \{ cargo(r1)=nil, loc(c1)=d1, \\ loc(r1)=d1, \ldots \}
```

```
load(r, c, l)

pre: cargo(r)=nil, loc(c)=l,

loc(r)=l

eff: cargo(r)\leftarrowc, loc(c)\leftarrowr

move(r, d, e)

pre: loc(r)=d

eff: loc(r)\leftarrowe

unload(r, c, l)

pre: loc(c)=r, loc(r)=l

eff: cargo(r)\leftarrownil, loc(c)\leftarrowl
```

```
r \in Robots
c \in Containers
l,d,e \in Locs
```


RPG-Landmarks(Σ , s_0 , g) $Queue \leftarrow \langle \text{all literals in } g \rangle$; $Examined \leftarrow \emptyset$ while $Queue \neq \langle \rangle$ do $\varphi \leftarrow \text{pop}(Queue)$ if $\varphi \notin Examined$ and $s_0 \nvDash \varphi$ then

> // Step 1: look for an "action landmark" $R \leftarrow \{ \text{actions whose effects include a literal in } \varphi \}$ generate RPG from s_0 using $A \setminus R$, stopping when $\hat{s}_k = \hat{s}_{k-1}$ // \hat{s}_k now includes every atom that 's achievable without R $N \leftarrow \{ \text{all actions in } R \text{ that are r-applicable in } \hat{s}_k \}$ if $N = \emptyset$ then return failure

// Step 2: get new landmarks from actions ' preconditions $\Phi \leftarrow \{p_1 \lor p_2 \lor \dots \lor p_m \mid m \le 4,$ each p_i is a precondition of at least one $a \in N$, and each $a \in N$ has at least one p_i as a precondition} append to Queue every $\varphi \in \Phi$ that isn't subsumed by another $\varphi' \in \Phi$ add φ to Examined

Example

 $Queue = \langle loc(c1)=d1, loc(r1)=d1 \rangle$

 $Examined = \{loc(c1)=r1\}$

 $\varphi = cargo(r1) = nil \quad \leftarrow s_0 \models \varphi$

 $R = \{ load(r1,c1,d1), load(r1,c1,d2), \\ load(r1,c1,d3) \} \\ N = \{ load(r1,c1,d1) \}$

 $\Phi = \{ cargo(r1)=nil, loc(c1)=d1, loc(r1)=d1, \ldots \}$

load(r, c, l) pre: cargo(r)=nil, loc(c)=l, loc(r)=l eff: cargo(r)←c, loc(c)←r move(r, d, e) pre: loc(r)=d eff: loc(r)←e unload(r, c, l) pre: loc(c)=r, loc(r)=l eff: cargo(r)←nil, loc(c)←l

 $r \in Robots$ $c \in Containers$ $l,d,e \in Locs$

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-Landmarks(Σ , s_0 , g) Queue \leftarrow (all literals in g); Examined $\leftarrow \emptyset$ while $Queue \neq \langle \rangle$ do $\varphi \leftarrow \mathsf{pop}(Queue)$ if $\varphi \notin Examined$ and $s_0 \not\models \varphi$ then

> // Step 1: look for an "action landmark" $R \leftarrow \{ actions whose effects include a literal in <math>\varphi \}$ generate RPG from s_0 using $A \setminus R$, stopping when $\hat{s}_k = \hat{s}_{k-1}$ $//\hat{s}_k$ now includes every atom that's achievable without R $N \leftarrow \{\text{all actions in } R \text{ that are r-applicable in } \hat{s}_k\}$ if $N = \emptyset$ then return failure

// Step 2: get new landmarks from actions' preconditions $\Phi \leftarrow \{p_1 \lor p_2 \lor \ldots \lor p_m \mid m \le 4,\$ each p_i is a precondition of at least one $a \in N$, and each $a \in N$ has at least one p_i as a precondition} add φ to *Examined* r1

append to *Queue every* $\varphi \in \Phi$ that isn't subsumed by another $\varphi' \in \Phi$

Example

loc(r1)=d1, ...}

 $Queue = \langle loc(r1) = d1 \rangle$

Examined = {loc(c1)=r1} $\varphi = \log(c1) = d1$ $\leftarrow s_0 \models \varphi$ $R = \{ load(r1,c1,d1), load(r1,c1,d2), \}$ load(r1,c1,d3) $N = \{ load(r1,c1,d1) \}$ $\Phi = \{ cargo(r1)=nil, loc(c1)=d1,$

loc(r)=leff: cargo(r) \leftarrow c, loc(c) \leftarrow rmove(r, d, e)pre: loc(r)=deff: $loc(r) \leftarrow e$ unload(r, c, l)pre: loc(c)=r, loc(r)=leff: cargo(r) \leftarrow nil, loc(c) \leftarrow l

pre: cargo(r)=nil, loc(c)=l,

 $r \in Robots$ $c \in Containers$ $l,d,e \in Locs$

load(*r*, *c*, *l*)

RPG-Landmarks(Σ , s_0 , g) Queue \leftarrow (all literals in g); Examined $\leftarrow \emptyset$ while $Queue \neq \langle \rangle$ do

 $\varphi \leftarrow \mathsf{pop}(Queue)$

if $\varphi \notin Examined$ and $s_0 \not\models \varphi$ then

// Step 1: look for an "action landmark" $R \leftarrow \{ actions whose effects include a literal in <math>\varphi \}$ generate RPG from s_0 using $A \setminus R$, stopping when $\hat{s}_k = \hat{s}_{k-1}$ $//\hat{s}_k$ now includes every atom that's achievable without R $N \leftarrow \{\text{all actions in } R \text{ that are r-applicable in } \hat{s}_k\}$ if $N = \emptyset$ then return failure

// Step 2: get new landmarks from actions' preconditions $\Phi \leftarrow \{p_1 \lor p_2 \lor \ldots \lor p_m \mid m \le 4,\$ each p_i is a precondition of at least one $a \in N$, and each $a \in N$ has at least one p_i as a precondition} append to *Queue every* $\varphi \in \Phi$ that isn't subsumed by another $\varphi' \in \Phi$ add φ to *Examined* return Examined r1 ∞ d3 $\hat{s}_k = \{ loc(r1) = d2, loc(r1) = d3, \}$ $s_0 = \{ loc(r1) = d3, \}$ loc(c1)=d1, cargo(r1)=nil,

loc(c1)=d1

Example

$Queue = \langle \rangle$

Examined = {loc(c1)=r1} $\varphi = \log(r1) = d1 \quad \leftarrow s_0 \neq \varphi$ $R = \{move(r1, d2, d1),$ move(r1,d3,d1) $N = \{ load(r1,c1,d1) \}$ $\Phi = \{ cargo(r1) = nil, loc(c1) = d1,$ $loc(r1)=d1, ... \}$

> $A \setminus R = \{ load(r1,c1,l), \}$ unload(r1,c1,l),move(r1,*d*,d2), move(r1, d, d3)

cargo(r1)=nil}

load(*r*, *c*, *l*) pre: cargo(r)=nil, loc(c)=l, loc(r)=leff: cargo(r) \leftarrow c, loc(c) \leftarrow rmove(r, d, e)pre: loc(r)=deff: $loc(r) \leftarrow e$ unload(r, c, l)pre: loc(c)=r, loc(r)=leff: cargo(r) \leftarrow nil, loc(c) $\leftarrow l$

 $r \in Robots$ $c \in Containers$ $l,d,e \in Locs$

 $g = \{ loc(r1) = d3, loc(c1) = r1 \}$

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

 d^2

RPG-Landmarks(Σ , s_0 , g) Queue \leftarrow (all literals in g); Examined $\leftarrow \emptyset$ while $Queue \neq \langle \rangle$ do $\varphi \leftarrow \mathsf{pop}(Queue)$ if $\varphi \notin Examined$ and $s_0 \not\models \varphi$ then // Step 1: look for an "action landmark" $R \leftarrow \{ actions whose effects include a literal in <math>\varphi \}$ generate RPG from s_0 using $A \setminus R$, stopping when $\hat{s}_k = \hat{s}_{k-1}$ $//\hat{s}_k$ now includes every atom that's achievable without R $N \leftarrow \{\text{all actions in } R \text{ that are r-applicable in } \hat{s}_k\}$ if $N = \emptyset$ then return failure // Step 2: get new landmarks from actions' preconditions $\Phi \leftarrow \{p_1 \lor p_2 \lor \ldots \lor p_m \mid m \le 4,\$ each p_i is a precondition of at least one $a \in N$, and each $a \in N$ has at least one p_i as a precondition} append to *Queue every* $\varphi \in \Phi$ that isn't subsumed by another $\varphi' \in \Phi$ add φ to *Examined* return Examined r1 0 d3 $s_0 = \{ loc(r1) = d3, \}$ cargo(r1)=nil, loc(c1)=d1d2

Example

$Queue = \langle \rangle$

```
Examined = \{loc(c1)=r1\}
\varphi = loc(r1)=d1
R = \{move(r1,d2,d1), 
     move(r1,d3,d1)
N = \{move(r1,d2,d1)\}
     move(r1,d3,d1)
```

```
\Phi = \{ cargo(r1) = nil, loc(c1) = d1, 
loc(r1)=d1, ...}
```

```
move(r1, d2, d1)
  pre: loc(r1) = d2
  eff: loc(r1) \leftarrow d1
move(r1, d3, d1)
  pre: loc(r1) = d3
  eff: loc(r1) \leftarrow d1
```

```
\hat{s}_k = \{ loc(r1) = d2, loc(r1) = d3, \}
        loc(c1)=d1,
       cargo(r1)=nil}
```

load(*r*, *c*, *l*) pre: cargo(r)=nil, loc(c)=l, loc(r)=leff: cargo(r) $\leftarrow c$, loc(c) $\leftarrow r$ move(r, d, e)pre: loc(r)=deff: $loc(r) \leftarrow e$ unload(r, c, l)pre: loc(c)=r, loc(r)=leff: cargo(r) \leftarrow nil, loc(c) \leftarrow l

 $r \in Robots$ $c \in Containers$ $l,d,e \in Locs$

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

load(r, c, l) pre: cargo(r)=nil, loc(c)=l, loc(r)=leff: cargo(r)←c, loc(c)←rmove(r, d, e) pre: loc(r)=deff: loc(r)←eunload(r, c, l) pre: loc(c)=r, loc(r)=leff: cargo(r)←nil, loc(c)←l

 $r \in Robots$ $c \in Containers$ $l,d,e \in Locs$

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RPG-Landmarks(Σ , s_0 , g) $Queue \leftarrow \langle \text{all literals in } g \rangle$; $Examined \leftarrow \emptyset$ while $Queue \neq \langle \rangle$ do $\varphi \leftarrow \text{pop}(Queue)$ if $\varphi \notin Examined$ and $s_0 \not\models \varphi$ then

> // Step 1: look for an "action landmark" $R \leftarrow \{ \text{actions whose effects include a literal in } \varphi \}$ generate RPG from s_0 using $A \setminus R$, stopping when $\hat{s}_k = \hat{s}_{k-1}$ // \hat{s}_k now includes every atom that 's achievable without R $N \leftarrow \{ \text{all actions in } R \text{ that are r-applicable in } \hat{s}_k \}$ if $N = \emptyset$ then return failure

// Step 2: get new landmarks from actions ' preconditions
Φ ← {p₁ ∨ p₂ ∨ ... ∨ p_m | m ≤ 4, each p_i is a precondition of at least one a ∈ N, and each a ∈ N has at least one p_i as a precondition}
append to Queue every φ ∈ Φ that isn't subsumed by another φ' ∈ Φ

add φ to Examined return Examined d3 $s_0 = \{loc(r1)=d3, cargo(r1)=nil, loc(c1)=d1\}$

Example

$Queue = \langle \rangle$

 $Examined = \{loc(c1)=r1, loc(r1)=d1\}$ $\varphi = loc(r1)=d2 \lor loc(r1)=d3$ $R = \{move(r1,d2,d1), \uparrow s_0 \models \varphi$ $move(r1,d3,d1)\}$ $N = \{move(r1,d2,d1)$ $move(r1,d3,d1)\}$ $\Phi = \{loc(r1)=d2 \lor loc(r1)=d3\}$

load(r, c, l)pre: cargo(r)=nil, loc(c)=l, loc(r)=l eff: cargo(r) \leftarrow c, loc(c) \leftarrow r move(r, d, e) pre: loc(r)=d eff: loc(r) \leftarrow e unload(r, c, l) pre: loc(c)=r, loc(r)=l eff: cargo(r) \leftarrow nil, loc(c) \leftarrow l

 $r \in Robots$ $c \in Containers$ $l,d,e \in Locs$

RPG-Landmarks(Σ , s_0 , g)

Queue \leftarrow (all literals in *g*); *Examined* $\leftarrow \emptyset$

while $Queue \neq \langle \rangle$ do

 $\varphi \leftarrow \mathsf{pop}(Queue)$

if $\varphi \notin Examined$ and $s_0 \not\models \varphi$ then

// Step 1: look for an "action landmark" $R \leftarrow \{ \text{actions whose effects include a literal in } \varphi \}$ generate RPG from s_0 using $A \setminus R$, stopping when $\hat{s}_k = \hat{s}_{k-1}$ // \hat{s}_k now includes every atom that 's achievable without R $N \leftarrow \{ \text{all actions in } R \text{ that are r-applicable in } \hat{s}_k \}$ if $N = \emptyset$ then return failure

// Step 2: get new landmarks from actions ' preconditions $\Phi \leftarrow \{p_1 \lor p_2 \lor \dots \lor p_m \mid m \le 4,$ each p_i is a precondition of at least one $a \in N$, and each $a \in N$ has at least one p_i as a precondition} append to Queue every $\varphi \in \Phi$ that isn't subsumed by another $\varphi' \in \Phi$ add φ to Examined

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

 $Queue = \langle \rangle$

Return 2

 $Examined = \{loc(c1)=r1, loc(r1)=d1\}$ $\varphi = loc(r1)=d2 \lor loc(r1)=d3$ $R = \{move(r1,d2,d1), move(r1,d3,d1)\}$ $N = \{move(r1,d2,d1)\}$ $\Phi = \{loc(r1)=d2\}$

load(r, c, l) pre: cargo(r)=nil, loc(c)=l, loc(r)=l eff: cargo(r)←c, loc(c)←r move(r, d, e) pre: loc(r)=d eff: loc(r)←e unload(r, c, l) pre: loc(c)=r, loc(r)=l eff: cargo(r)←nil, loc(c)←l

 $r \in Robots$ $c \in Containers$ $l,d,e \in Locs$

Summary

- Search-tree terminology
- 3.1. Forward Search
 - Forward-search, Forward-Search-Det
 - cycle-checking
 - Search algorithms classified by
 - (i) node selection
 - (ii) pruning
 - Breadth-first, depth-first, uniform-cost search
 - ► A*, GBFS
 - DFBB, IDS

- 3.2. Heuristic Functions
 - Straight-line distance example
 - Delete-relaxation heuristics
 - relaxed states, γ^+ ,
 - h^+ minimal relaxed solution heuristic
 - $h^{\rm FF}$ Fast-Forward heuristic
 - HFF algorithm computes h^{FF}
 - Disjunctive landmarks, RPG-Landmark, h^{RL}
 - Get necessary actions by making RPG for all non-relevant actions